Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Technol ; 291: 121805, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31351376

RESUMO

With a view to boost practical implementation of lignin conversion technologies, this paper assesses the availability of industrial lignin and evaluates pricing strategies applicable to multi-product biorefineries. The biorefineries, producing either denatured ethanol or sugar hydrolysate as a main product, can yield 43% and 61% of lignin residue (LR) comprising 33% and 23% of lignin by mass, respectively, without sacrificing the output of the main product and before electricity import has become indispensable. Analysis of the pricing strategies reveals that LR must be treated as a low-value by-product, and its minimum selling price (MSP) is driven mainly by the prevailing electricity price. Under the biorefinery net zero energy balance, and taking into account the LR market price adequacy, as well as the main probabilistic conditions, the upper range for the MSP is calculated at $43-70 and $18-37 per ton for biorefineries producing ethanol and hydrolysate, respectively.


Assuntos
Lignina/química , Custos e Análise de Custo , Eletricidade , Etanol/química , Indústrias , Lignina/economia
2.
Bioresour Technol ; 243: 589-599, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28709064

RESUMO

This paper explores the environmental and economic aspects of fast pyrolytic conversion of lignin, obtained from 2G ethanol plants, to transport fuels for both the marine and automotive markets. Various scenarios are explored, pertaining to aggregation of lignin from several sites, alternative energy carries to replace lignin, transport modalities, and allocation methodology. The results highlight two critical factors that ultimately determine the economic and/or environmental fuel viability. The first factor, the logistics scheme, exhibited the disadvantage of the centralized approach, owing to prohibitively expensive transportation costs of the low energy-dense lignin. Life cycle analysis (LCA) displayed the second critical factor related to alternative energy carrier selection. Natural gas (NG) chosen over additional biomass boosts well-to-wheel greenhouse gas emissions (WTW GHG) to a level incompatible with the reduction targets set by the U.S. renewable fuel standard (RFS). Adversely, the process' economics revealed higher profits vs. fossil energy carrier.


Assuntos
Biocombustíveis , Lignina , Biomassa , Meio Ambiente , Etanol , Efeito Estufa , Gás Natural
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA