Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Microbiol ; 9(8): 2099-2112, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38997518

RESUMO

Approved vaccines are effective against severe COVID-19, but broader immunity is needed against new variants and transmission. Therefore, we developed genome-modified live-attenuated vaccines (LAV) by recoding the SARS-CoV-2 genome, including 'one-to-stop' (OTS) codons, disabling Nsp1 translational repression and removing ORF6, 7ab and 8 to boost host immune responses, as well as the spike polybasic cleavage site to optimize the safety profile. The resulting OTS-modified SARS-CoV-2 LAVs, designated as OTS-206 and OTS-228, are genetically stable and can be intranasally administered, while being adjustable and sustainable regarding the level of attenuation. OTS-228 exhibits an optimal safety profile in preclinical animal models, with no side effects or detectable transmission. A single-dose vaccination induces a sterilizing immunity in vivo against homologous WT SARS-CoV-2 challenge infection and a broad protection against Omicron BA.2, BA.5 and XBB.1.5, with reduced transmission. Finally, this promising LAV approach could be applicable to other emerging viruses.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Genoma Viral , SARS-CoV-2 , Vacinas Atenuadas , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/administração & dosagem , SARS-CoV-2/genética , SARS-CoV-2/imunologia , COVID-19/prevenção & controle , COVID-19/transmissão , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/genética , Animais , Genoma Viral/genética , Humanos , Camundongos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Feminino , Chlorocebus aethiops , Modelos Animais de Doenças , Células Vero , Anticorpos Neutralizantes/imunologia
2.
Nat Commun ; 13(1): 5929, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207334

RESUMO

Variant of concern (VOC) Omicron-BA.1 has achieved global predominance in early 2022. Therefore, surveillance and comprehensive characterization of Omicron-BA.1 in advanced primary cell culture systems and animal models are urgently needed. Here, we characterize Omicron-BA.1 and recombinant Omicron-BA.1 spike gene mutants in comparison with VOC Delta in well-differentiated primary human nasal and bronchial epithelial cells in vitro, followed by in vivo fitness characterization in hamsters, ferrets and hACE2-expressing mice, and immunized hACE2-mice. We demonstrate a spike-mediated enhancement of early replication of Omicron-BA.1 in nasal epithelial cultures, but limited replication in bronchial epithelial cultures. In hamsters, Delta shows dominance over Omicron-BA.1, and in ferrets Omicron-BA.1 infection is abortive. In hACE2-knock-in mice, Delta and a Delta spike clone also show dominance over Omicron-BA.1 and an Omicron-BA.1 spike clone, respectively. Interestingly, in naïve K18-hACE2 mice, we observe Delta spike-mediated increased replication and pathogenicity and Omicron-BA.1 spike-mediated reduced replication and pathogenicity, suggesting that the spike gene is a major determinant of replication and pathogenicity. Finally, the Omicron-BA.1 spike clone is less well-controlled by mRNA-vaccination in K18-hACE2-mice and becomes more competitive compared to the progenitor and Delta spike clones, suggesting that spike gene-mediated immune evasion is another important factor that led to Omicron-BA.1 dominance.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Furões , Humanos , Melfalan , Camundongos , Fenótipo , RNA Mensageiro , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , gama-Globulinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA