RESUMO
AIMS: In recent years, there has been an increase in patients with arteriosclerosis and the risk of lifestyle-related diseases. However, the pathogenesis and medication of atherosclerosis have not been elucidated. We developed a rat model of lifestyle-related diseases by feeding a high-fat diet and 30% sucrose solution (HFDS) to spontaneously hypertensive hyperlipidemic rats (SHHR) and reported that this model is a useful model of early atherosclerosis. In order to elucidate the pathogenesis of early atherosclerosis, we searched for atherosclerosis-related genes by microarray analysis using the aortic arch rat model of lifestyle-related diseases. MAIN METHODS: Four-month-old male Sprague-Dawley rats and SHHR were each divided into two normal diet (ND) groups and two HFDS groups. After a four-month treatment, the expression of mRNA in the aortic arch was detected using the oligo DNA microarray one-color method and quantified using real-time PCR. KEY FINDINGS: In this study, we detected 39 genes in microarray analysis. Esm1, Retnlb Mkks, and Grem2 showed particularly marked changes in gene expression in the SHHR-HFDS group. Compared with the SD-ND group, the SHHR-HFDS group had an increase in Mkks gene expression of about 26-fold and an approximately 22-fold increase in the expression of Grem2. Similarly, the expression of Esm1 increased by about 12-fold and that of Retnlg by about 10-fold as shown by quantitative real-time PCR. SIGNIFICANCE: This study suggested that these four genes might be important in early atherosclerosis development.