Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0302907, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753826

RESUMO

Honey bees (Apis mellifera) are exposed to multiple stressors such as pesticides, lack of forage, and diseases. It is therefore a long-standing aim to develop robust and meaningful indicators of bee vitality to assist beekeepers While established indicators often focus on expected colony winter mortality based on adult bee abundance and honey reserves at the beginning of the winter, it would be useful to have indicators that allow detection of stress effects earlier in the year to allow for adaptive management. We used the established honey bee simulation model BEEHAVE to explore the potential of different indicators such as population size, number of capped brood cells, flight activity, abundance of Varroa mites, honey stores and a brood-bee ratio. We implemented two types of stressors in our simulations: 1) parasite pressure, i.e. sub-optimal Varroa treatment by the beekeeper (hereafter referred as Biotic stress) and 2) temporal forage gaps in spring and autumn (hereafter referred as Environmental stress). Neither stressor type could be detected by bee abundance or honey reserves at the end of the first year. However, all response variables used in this study did reveal early warning signals during the course of the year. The most reliable and useful measures seem to be related to brood and the abundance of Varroa mites at the end of the year. However, while in the model we have full access to time series of variables from stressed and unstressed colonies, knowledge of these variables in the field is challenging. We discuss how our findings can nevertheless be used to develop practical early warning indicators. As a next step in the interactive development of such indicators we suggest empirical studies on the importance of the number of capped brood cells at certain times of the year on bee population vitality.


Assuntos
Varroidae , Abelhas/parasitologia , Abelhas/fisiologia , Animais , Estações do Ano , Mel , Simulação por Computador , Colapso da Colônia , Densidade Demográfica , Estresse Fisiológico , Criação de Abelhas
2.
Front Physiol ; 14: 1171817, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324382

RESUMO

As part of the agricultural landscape, non-target organisms, such as bees, may be exposed to a cocktail of agrochemicals including insecticides and spray adjuvants like organosilicone surfactants (OSS). While the risks of insecticides are evaluated extensively in their approval process, in most parts of the world however, authorization of adjuvants is performed without prior examination of the effects on bees. Nevertheless, recent laboratory studies evidence that adjuvants can have a toxicity increasing effect when mixed with insecticides. Therefore, this semi-field study aims to test whether an OSS mixed with insecticides can influence the insecticidal activity causing increased effects on bees and bee colonies under more realistic exposure conditions. To answer this question a pyrethroid (Karate Zeon) and a carbamate (Pirimor Granulat) were applied in a highly bee attractive crop (oil seed rape) during bee flight either alone or mixed with the OSS Break-Thru S 301 at field realistic application rates. The following parameters were assessed: mortality, flower visitation, population and brood development of full-sized bee colonies. Our results show that none of the above mentioned parameters was significantly affected by the insecticides alone or their combination with the adjuvant, except for a reduced flower visitation rate in both carbamate treatments (Tukey-HSD, p < 0.05). This indicates that the OSS did not increase mortality to a biologically relevant extent or any of the parameters observed on honey bees and colonies in this trial. Hence, social buffering may have played a crucial role in increasing thresholds for such environmental stressors. We confirm that the results of laboratory studies on individual bees cannot necessarily be extrapolated to the colony level and further trials with additional combinations are required for a well-founded evaluation of these substances.

3.
Environ Toxicol Chem ; 42(5): 1167-1177, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36861216

RESUMO

In 2018 the European Union (EU) banned the three neonicotinoid insecticides imidacloprid, clothianidin (CLO), and thiamethoxam (TMX), but they can still be used if an EU Member State issues an emergency approval. Such an approval went into effect in 2021 for TMX-coated sugar beet seeds in Germany. Usually, this crop is harvested before flowering without exposing non-target organisms to the active ingredient or its metabolites. In addition to the approval, strict mitigation measures were imposed by the EU and the German federal states. One of the measures was to monitor the drilling of sugar beet and its impact on the environment. Hence we took residue samples from different bee and plant matrices and at different dates to fully map beet growth in the German states of Lower Saxony, Bavaria, and Baden-Württemberg. A total of four treated and three untreated plots were surveyed, resulting in 189 samples. Residue data were evaluated using the US Environmental Protection Agency BeeREX model to assess acute and chronic risk to honey bees from the samples, because oral toxicity data are widely available for both TMX and CLO. Within treated plots, we found no residues either in pools of nectar and honey crop samples (n = 24) or dead bee samples (n = 21). Although 13% of beebread and pollen samples and 88% of weed and sugar beet shoot samples were positive, the BeeREX model found no evidence of acute or chronic risk. We also detected neonicotinoid residues in the nesting material of the solitary bee Osmia bicornis, probably from contaminated soil of a treated plot. All control plots were free of residues. Currently, there are insufficient data on wild bee species to allow for an individual risk assessment. In terms of the future use of these highly potent insecticides, therefore, it must be ensured that all regulatory requirements are complied with to mitigate any unintentional exposure. Environ Toxicol Chem 2023;42:1167-1177. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Beta vulgaris , Inseticidas , Abelhas , Animais , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Tiametoxam/toxicidade , Açúcares
4.
Ecol Evol ; 12(11): e9456, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36381398

RESUMO

The BEEHAVE model simulates the population dynamics and foraging activity of a single honey bee colony (Apis mellifera) in great detail. Although it still makes numerous simplifying assumptions, it appears to capture a wide range of empirical observations. It could, therefore, in principle, also be used as a tool in beekeeper education, as it allows the implementation and comparison of different management options. Here, we focus on treatments aimed at controlling the mite Varroa destructor. However, since BEEHAVE was developed in the UK, mite treatment includes the use of a synthetic acaricide, which is not part of Good Beekeeping Practice in Germany. A practice that consists of drone brood removal from April to June, treatment with formic acid in August/September, and treatment with oxalic acid in November/December. We implemented these measures, focusing on the timing, frequency, and spacing between drone brood removals. The effect of drone brood removal and acid treatment, individually or in combination, on a mite-infested colony was examined. We quantify the efficacy of Varroa mite control as the reduction of mites in treated bee colonies compared to untreated bee colonies. We found that drone brood removal was very effective, reducing mites by 90% at the end of the first simulation year after the introduction of mites. This value was significantly higher than the 50-67% reduction expected by bee experts and confirmed by empirical studies. However, literature reports varying percent reductions in mite numbers from 10 to 85% after drone brood removal. The discrepancy between model results, empirical data, and expert estimates indicate that these three sources should be reviewed and refined, as all are based on simplifying assumptions. These results and the adaptation of BEEHAVE to the Good Beekeeping Practice are a decisive step forward for the future use of BEEHAVE in beekeeper education in Germany and anywhere where organic acids and drone brood removal are utilized.

5.
Insects ; 11(10)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992639

RESUMO

The ongoing debate about glyphosate-based herbicides (GBH) and their implications for beneficial arthropods gives rise to controversy. This research was carried out to cover possible sublethal GBH effects on the brood and colony development, adult survival, and overwintering success of honey bees (Apis mellifera L.) under field conditions. Residues in bee relevant matrices, such as nectar, pollen, and plants, were additionally measured. To address these questions, we adopted four independent study approaches. For brood effects and survival, we orally exposed mini-hives housed in the "Kieler mating-nuc" system to sublethal concentrations of 4.8 mg glyphosate/kg (T1, low) and 137.6 mg glyphosate/kg (T2, high) over a period of one brood cycle (21 days). Brood development and colony conditions were assessed after a modified OECD method (No. 75). For adult survival, we weighed and labeled freshly emerged workers from control and exposed colonies and introduced them into non-contaminated mini-hives to monitor their life span for 25 consecutive days. The results from these experiments showed a trivial effect of GBH on colony conditions and the survival of individual workers, even though the hatching weight was reduced in T2. The brood termination rate (BTR) in the T2 treatment, however, was more than doubled (49.84%) when compared to the control (22.11%) or T1 (20.69%). This was surprising as T2 colonies gained similar weight and similar numbers of bees per colony compared to the control, indicating an equal performance. Obviously, the brood development in T2 was not "terminated" as expected by the OECD method terminology, but rather "slowed down" for an unknown period of time. In light of these findings, we suggest that chronic high GBH exposure is capable of significantly delaying worker brood development, while no further detrimental effects seem to appear at the colony level. Against this background, we discuss additional results and possible consequences of GBH for honey bee health.

6.
Saudi J Biol Sci ; 27(1): 247-250, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31889844

RESUMO

Varroa tolerance as a consequence of host immunity may contribute substantially to reduce worldwide colony declines. Therefore, special breeding programs were established and varroa surviving populations investigated to understand mechanisms behind this adaptation. The aim of this study was to investigate the reproductive capacity in the three most common subspecies of the European honey bee (Carnica, Mellifera, Ligustica) and the F2 generation of a varroa surviving population, to identify if managed host populations possibly have adapted over time already. Both, singly infested drone and worker brood were assessed to determine fertility and fecundity of varroa foundresses in their respective group. We found neither parameter to be significantly different within the four subspecies, demonstrating that no adaptations have occurred in terms of the reproductive success of Varroa destructor. In all groups mother mites reproduce equally successful and are potentially able to cause detrimental damage to their host when not being treated sufficiently. The data further suggests that a population once varroa tolerant does not necessarily inherit this trait to following generations after the F1, which could be of particular interest when selecting populations for resistance breeding. Reasons and consequences are discussed.

7.
Sci Total Environ ; 661: 553-562, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30682608

RESUMO

Mobile phones can be found almost everywhere across the globe, upholding a direct point-to-point connection between the device and the broadcast tower. The emission of radiofrequency electromagnetic fields (RF-EMF) puts the surrounding environment inevitably into contact with this radiation. We have therefore exposed honey bee queen larvae to the radiation of a common mobile phone device (GSM band at 900 MHz) during all stages of their pre-adult development including pupation. After 14 days of exposure, hatching of adult queens was assessed and mating success after further 11 days, respectively. Moreover, full colonies were established of five of the untreated and four of the treated queens to contrast population dynamics. We found that mobile phone radiation had significantly reduced the hatching ratio but not the mating success. If treated queens had successfully mated, colony development was not adversely affected. We provide evidence that mobile phone radiation may alter pupal development, once succeeded this point, no further impairment has manifested in adulthood. Our results are discussed against the background of long-lasting consequences for colony performance and the possible implication on periodic colony losses.


Assuntos
Abelhas/efeitos da radiação , Ondas de Rádio/efeitos adversos , Comportamento Sexual Animal/efeitos da radiação , Animais , Abelhas/crescimento & desenvolvimento , Abelhas/fisiologia , Telefone Celular , Larva/crescimento & desenvolvimento , Larva/fisiologia , Larva/efeitos da radiação , Reprodução/efeitos da radiação
8.
Ecotoxicology ; 27(5): 527-538, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29556938

RESUMO

Neonicotinoids alone or in combination with pathogens are considered to be involved in the worldwide weakening of honey bees. We here present a new approach for testing sublethal and/or synergistic effects in free flying colonies. In our experiment individually marked honey bees were kept in free flying mini-hives and chronically exposed to sublethal doses of the neonicotinoid clothianidin. Additional groups of bees were challenged with Nosema infections or with combinations of the pesticide and pathogens. Longevity and flight activity of the differentially treated bees were monitored for a period of 18 days. In contrast to previous laboratory studies, no effect of the neonicotinoid treatment on mortality or flight activity could be observed. Although the lifespan of Nosema infected bees were significantly reduced compared to non-infected bees a combination of pesticide and pathogen did not reveal any synergistic effect. Our results indicate that individual bees are less impaired by neonicotinoids if kept within the social environment of the colony. The effect of such a "social buffering" should be considered in future risk assessments.


Assuntos
Abelhas/fisiologia , Guanidinas/efeitos adversos , Inseticidas/efeitos adversos , Neonicotinoides/efeitos adversos , Nosema/química , Tiazóis/efeitos adversos , Animais , Abelhas/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Longevidade/efeitos dos fármacos
9.
Environ Microbiol ; 17(11): 4322-31, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25728008

RESUMO

Interactions between pesticides and parasites are believed to be responsible for increased mortality of honey bee (Apis mellifera) colonies in the northern hemisphere. Previous efforts have employed experimental approaches using small groups under laboratory conditions to investigate influence of these stressors on honey bee physiology and behaviour, although both the colony level and field conditions play a key role for eusocial honey bees. Here, we challenged honey bee workers under in vivo colony conditions with sublethal doses of the neonicotinoid thiacloprid, the miticide tau-fluvalinate and the endoparasite Nosema ceranae, to investigate potential effects on longevity and behaviour using observation hives. In contrast to previous laboratory studies, our results do not suggest interactions among stressors, but rather lone effects of pesticides and the parasite on mortality and behaviour, respectively. These effects appear to be weak due to different outcomes at the two study sites, thereby suggesting that the role of thiacloprid, tau-fluvalinate and N. ceranae and interactions among them may have been overemphasized. In the future, investigations into the effects of honey bee stressors should prioritize the use of colonies maintained under a variety of environmental conditions in order to obtain more biologically relevant data.


Assuntos
Abelhas/efeitos dos fármacos , Abelhas/microbiologia , Inseticidas/farmacologia , Nitrilas/farmacologia , Nosema/patogenicidade , Piretrinas/farmacologia , Piridinas/farmacologia , Tiazinas/farmacologia , Animais , Neonicotinoides , Nosema/fisiologia
10.
J Invertebr Pathol ; 113(1): 56-62, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23376006

RESUMO

The reproductive cycle of the parasitic mite Varroa destructor is closely linked to the development of the honey bee host larvae. Using a within colony approach we introduced phoretic Varroa females into brood cells of different age in order to analyze the capacity of certain stages of the honey bee larva to either activate or interrupt the reproduction of Varroa females. Only larvae within 18 h (worker) and 36 h (drones), respectively, after cell capping were able to stimulate the mite's oogenesis. Therewith we could specify for the first time the short time window where honey bee larvae provide the signals for the activation of the Varroa reproduction. Stage specific volatiles of the larval cuticle are at least part of these activation signals. This is confirmed by the successful stimulation of presumably non-reproducing mites to oviposition by the application of a larval extract into the sealed brood cells. According to preliminary quantitative GC-MS analysis we suggest certain fatty acid ethyl esters as candidate compounds. If Varroa females that have just started with egg formation are transferred to brood cells containing host larvae of an elder stage two-thirds of these mites stopped their oogenesis. This confirms the presence of an additional signal in the host larvae allowing the reproducing mites to adjust their own reproductive cycle to the ontogenetic development of the host. From an adaptive point of view that sort of a stop signal enables the female mite to save resources for a next reproductive cycle if the own egg development is not sufficiently synchronized with the development of the host. The results presented here offer the opportunity to analyze exactly those host stages that have the capacity to activate or interrupt the Varroa reproduction in order to identify the crucial host signals.


Assuntos
Abelhas/parasitologia , Interações Hospedeiro-Parasita , Varroidae/fisiologia , Animais , Cromatografia Gasosa-Espectrometria de Massas , Larva/parasitologia , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA