Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Anal Chem ; 95(41): 15162-15170, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37796921

RESUMO

Strongly confined flow of particulate fluids is encountered in applications ranging from three-dimensional (3D) printing to the spreading of foods and cosmetics into thin layers. When flowing in constrictions with gap sizes, w, within 102 times the mean size of particles or aggregates, d, structured fluids experience enhanced bulk velocities and inhomogeneous viscosities, as a result of so-called cooperative, or nonlocal, particle interactions. Correctly predicting cooperative flow for a wide range of complex fluids requires high-resolution flow imaging modalities applicable in situ to even optically opaque fluids. To this goal, we here developed a pressure-driven high-field magnetic resonance imaging (MRI) velocimetry platform, comprising a pressure controller connected to a capillary. Wall properties and diameter could be modified respectively as hydrophobic/hydrophilic, or within w ∼ 100-540 µm. By achieving a high spatial resolution of 9 µm, flow cooperativity length scales, ξ, down to 15 µm in Carbopol with d ∼ 2 µm could be quantified by means of established physical models with an accuracy of 13%. The same approach was adopted for a heterogeneous fat crystal dispersion (FCD) with d and ξ values up to an order of magnitude higher than those for Carbopol. We found that for strongly confined flow of Carbopol in the 100 µm capillary, ξ is independent of flow conditions. For the FCD, ξ increases with gap size and applied pressures over 0.25-1 bar. In both samples, nonlocal interactions span domains up to about 5-8 particles but, at the highest confinement degree explored, ∼8% for FCD, domains of only ∼2 particles contribute to cooperative flow. The developed flow-MRI platform is easily scalable to ultrahigh field MRI conditions for chemically resolved velocimetric measurements of, e.g., complex fluids with anisotropic particles undergoing alignment. Future potential applications of the platform encompass imaging extrusion under confinement during the 3D printing of complex dispersions or in in vitro vascular and perfusion studies.

2.
Nat Commun ; 12(1): 5847, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615876

RESUMO

Prediction of the transition from stable to acute coronary syndromes driven by vascular inflammation, thrombosis with subsequent microembolization, and vessel occlusion leading to irreversible myocardial damage is still an unsolved problem. Here, we introduce a multi-targeted and multi-color nanotracer platform technology that simultaneously visualizes evolving danger patterns in the development of progressive coronary inflammation and atherothrombosis prior to spontaneous myocardial infarction in mice. Individual ligand-equipped perfluorocarbon nanoemulsions are used as targeting agents and are differentiated by their specific spectral signatures via implementation of multi chemical shift selective 19F MRI. Thereby, we are able to identify areas at high risk of and predictive for consecutive development of myocardial infarction, at a time when no conventional parameter indicates any imminent danger. The principle of this multi-targeted approach can easily be adapted to monitor also a variety of other disease entities and constitutes a technology with disease-predictive potential.


Assuntos
Doenças Cardiovasculares/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Animais , Diagnóstico Precoce , Feminino , Coração/diagnóstico por imagem , Insuficiência Cardíaca , Inflamação/diagnóstico por imagem , Masculino , Camundongos , Infarto do Miocárdio/diagnóstico por imagem , Miocárdio , Nanopartículas
3.
MAGMA ; 32(4): 437-447, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30649708

RESUMO

OBJECTIVE: The applicability of the balanced steady-state free precession (bSSFP) sequence to the field of MR microscopy was investigated, since the potentially high SNR makes bSSFP attractive. However, particularly at ultra-high magnetic fields, a number of constraints emerge: the frequency sensitivity of the bSSFP signal, the duty cycle of the imaging gradients, and the intrinsic diffusion attenuation of the steady state due to the imaging gradients. MATERIALS AND METHODS: Optimization of the bSSFP sequence was performed on three imaging systems (7 T and 9.4 T) suited for MR microscopy. Since biological samples are often imaged in the very proximity of materials from sample containers/holder or devices such as electrodes, several microscopy phantoms representing such circumstances were fabricated and examined with 3D bSSFP. RESULTS: Artifact-free microscopic bSSFP images could be obtained with voxel sizes down to 16 µm × 16 µm × 78 µm and with an SNR gain of 25% over standard gradient echo images. CONCLUSION: With appropriate choice of phantom materials, optimization of the flip angle to the diffusion-attenuated steady state and protocols considering duty-cycle limitations, bSSFP can be a valuable tool in MR microscopy.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Microscopia/métodos , Algoritmos , Artefatos , Simulação por Computador , Aumento da Imagem , Processamento de Imagem Assistida por Computador/métodos , Campos Magnéticos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Água
4.
Anal Chem ; 88(22): 10790-10794, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27766840

RESUMO

We introduce hyperpolarizable 13C-labeled probes that identify multiple biologically important divalent metals via metal-specific chemical shifts. These features enable NMR measurements of calcium concentrations in human serum in the presence of magnesium. In addition, signal enhancement through dynamic nuclear polarization (DNP) increases the sensitivity of metal detection to afford measuring micromolar concentrations of calcium as well as simultaneous multi-metal detection by chemical shift imaging. The hyperpolarizable 13C-MRI sensors presented here enable sensitive NMR measurements and MR imaging of multiple divalent metals in opaque biological samples.

5.
J Nanosci Nanotechnol ; 12(12): 8920-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23447939

RESUMO

This paper presents results from measurements of viscosity of suspensions of Yttrium Oxide Y2O3 ceramic nanopowder in ethyl alcohol. The study was conducted at the request of and in cooperation with the ICMB. This research will add important information about the formation and viscosity characteristics of suspensions of nanopowders. The behavior of nanopowder suspensions has been examined in a wide range of shear rates from 0.01 s(-1) to 2000 s(-1). Additionally, the behavior of the suspension has been studied in the temperature range from -15 degrees C to 20 degrees C. Complementary experiments have been performed by application of a Rheo-NMR at Bruker Biospin and by the use of RheoScope at ThermoFisher companies.

6.
J Exp Bot ; 59(12): 3425-34, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18653689

RESUMO

Metabolic processes underlying the formation of floral nectar carbohydrates, especially the generation of the proportions of fructose, glucose, and sucrose, are important for understanding ecological plant-pollinator interactions. The ratio of sucrose-derived hexoses, fructose and glucose, in the floral nectar of Anigozanthos flavidus (Haemodoraceae) was observed to be different from 1:1, which cannot be explained by the simple action of invertases. Various NMR techniques were used to investigate how such an unbalanced ratio of the two nectar hexoses can be formed. High-resolution (13)C NMR spectroscopy in solution was used to determine the proportion of carbohydrates in vascular bundles of excised inflorescences fed with (13)C-labelled carbohydrates. These experiments verified that feeding did not affect the metabolic processes involved in nectar formation. In vivo magnetic resonance imaging (e.g. cyclic J cross-polarization) was used to detect carbohydrates in vascular bundles and (1)H spin echo imaging non-invasively displayed the architecture of tepal nectaries and showed how they are connected to the vascular bundles. A model of the carbohydrate metabolism involved in forming A. flavidus floral nectar was established. Sucrose from the vascular bundles is not directly secreted into the lumen of the nectary but, either before or after invertase-catalysed hydrolyses, taken up by nectary cells and cycled at least partly through glycolysis, gluconeogenesis, and the pentose phosphate pathway. Secretion of the two hexoses in the cytosolic proportion could elegantly explain the observed fructose:glucose ratio of the nectar.


Assuntos
Metabolismo dos Carboidratos , Flores/anatomia & histologia , Flores/metabolismo , Magnoliopsida/anatomia & histologia , Magnoliopsida/metabolismo , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
7.
Magn Reson Med ; 60(2): 449-56, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18666129

RESUMO

Localized two-dimensional MR spectroscopy (2D MRS) is impacting the in vivo studies of brain metabolites due to improved spectral resolution and unambiguous assignment opportunities. Despite the large number of transgenic mouse models available for neurological disorders, localized 2D MRS has not yet been implemented in the mouse brain due to size constraints. In this study we optimized a localized 2D proton chemical shift correlated spectroscopic sequence at field strength of 9.4T to obtain highly resolved 2D spectra from localized regions in mouse brains in vivo. The combination of the optimized 2D sequence, high field strength, strong gradient system, efficient water suppression, and the use of a short echo time allowed clear detection of cross-peaks of up to 16 brain metabolites, allowing their direct chemical shift assignments in vivo. To our knowledge this is the first in vivo 2D MRS study of the mouse brain, demonstrating its feasibility to resolve and simultaneously assign several metabolite resonances in the mouse brain in vivo. Implementation of 2D MRS will be invaluable in the identification of new biomarkers during disease progression and treatment using the various available mouse models.


Assuntos
Algoritmos , Encéfalo/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Proteínas do Tecido Nervoso/análise , Neurotransmissores/análise , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Prótons , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA