Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Front Allergy ; 5: 1389669, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919913

RESUMO

Food allergy, a group of adverse immune responses to normally innocuous food protein antigens, is an increasingly prevalent public health issue. The most common form is IgE-mediated food allergy in which food antigen-induced crosslinking of the high-affinity IgE-receptor, FcεRI, on the surface of mast cells triggers the release of inflammatory mediators that contribute to a wide range of clinical manifestations, including systemic anaphylaxis. Mast cells also play a critical function in adaptive immunity to foods, acting as adjuvants for food-antigen driven Th2 cell responses. While the diagnosis and treatment of food allergy has improved in recent years, no curative treatments are currently available. However, there is emerging evidence to suggest that both allergen-specific IgA and IgG antibodies can counter the activating effects of IgE antibodies on mast cells. Most notably, both antigen-specific IgA and IgG antibodies are induced in the course of oral immunotherapy. In this review, we highlight the role of mast cells in food allergy, both as inducers of immediate hypersensitivity reactions and as adjuvants for type 2 adaptive immune responses. Furthermore, we summarize current understanding of the immunomodulatory effects of antigen-specific IgA and IgG antibodies on IgE-induced mast cell activation and effector function. A more comprehensive understanding of the regulatory role of IgA and IgG in food allergy may provide insights into physiologic regulation of immune responses to ingested antigens and could seed novel strategies to treat allergic disease.

2.
J Allergy Clin Immunol Pract ; 11(11): 3391-3399.e3, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37544429

RESUMO

BACKGROUND: Debates on the allocation of medical resources during the coronavirus disease 2019 (COVID-19) pandemic revealed the need for a better understanding of immunological risk. Studies highlighted variable clinical outcomes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in individuals with defects in both adaptive and innate immunity, suggesting additional contributions from other factors. Notably, none of these studies controlled for variables linked with social determinants of health. OBJECTIVE: To determine the contributions of determinants of health to risk of hospitalization for SARS-CoV-2 infection among individuals with inborn errors of immunodeficiencies. METHODS: This is a retrospective, single-center cohort study of 166 individuals with inborn errors of immunity, aged 2 months through 69 years, who developed SARS-CoV-2 infections from March 1, 2020, through March 31, 2022. Risks of hospitalization were assessed using a multivariable logistic regression analysis. RESULTS: The risk of SARS-CoV-2-related hospitalization was associated with underrepresented racial and ethnic populations (odds ratio [OR] 4.50; 95% confidence interval [95% CI] 1.57-13.4), a diagnosis of any genetically defined immunodeficiency (OR 3.32; 95% CI 1.24-9.43), obesity (OR 4.24; 95% CI 1.38-13.3), and neurological disease (OR 4.47; 95% CI 1.44-14.3). The COVID-19 vaccination was associated with reduced hospitalization risk (OR 0.52; 95% CI 0.31-0.81). Defects in T cell and innate immune function, immune-mediated organ dysfunction, and social vulnerability were not associated with increased risk of hospitalization after controlling for covariates. CONCLUSIONS: The associations between race, ethnicity, and obesity with increased risk of hospitalization for SARS-CoV-2 infection indicate the importance of variables linked with social determinants of health as immunological risk factors for individuals with inborn errors of immunity.


Assuntos
COVID-19 , Doenças da Imunodeficiência Primária , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Estudos Retrospectivos , Estudos de Coortes , Vacinas contra COVID-19 , Obesidade , Hospitalização , Doenças da Imunodeficiência Primária/epidemiologia
3.
medRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333367

RESUMO

Background: Debates on the allocation of medical resources during the COVID-19 pandemic revealed the need for a better understanding of immunologic risk. Studies highlighted variable clinical outcomes of SARS-CoV-2 infections in individuals with defects in both adaptive and innate immunity, suggesting additional contributions from other factors. Notably, none of these studies controlled for variables linked with social determinants of health. Objective: To determine the contributions of determinants of health to risk of hospitalization for SARS-CoV-2 infection among individuals with inborn errors of immunodeficiencies. Methods: This is a retrospective, single-center cohort study of 166 individuals with inborn errors of immunity, aged two months through 69 years, who developed SARS-CoV-2 infections from March 1, 2020 through March 31, 2022. Risks of hospitalization was assessed using a multivariable logistic regression analysis. Results: The risk of SARS-CoV-2-related hospitalization was associated with underrepresented racial and ethnic populations (odds ratio [OR] 5.29; confidence interval [CI], 1.76-17.0), a diagnosis of any genetically-defined immunodeficiency (OR 4.62; CI, 1.60-14.8), use of B cell depleting therapy within one year of infection (OR 6.1; CI, 1.05-38.5), obesity (OR 3.74; CI, 1.17-12.5), and neurologic disease (OR 5.38; CI, 1.61-17.8). COVID-19 vaccination was associated with reduced hospitalization risk (OR 0.52; CI, 0.31-0.81). Defective T cell function, immune-mediated organ dysfunction, and social vulnerability were not associated with increased risk of hospitalization after controlling for covariates. Conclusions: The associations between race, ethnicity, and obesity with increased risk of hospitalization for SARS-CoV-2 infection indicate the importance of variables linked with social determinants of health as immunologic risk factors for individuals with inborn errors of immunity. Highlights: What is already known about this topic? Outcomes of SARS-CoV-2 infections in individuals with inborn errors of immunity (IEI) are highly variable. Prior studies of patients with IEI have not controlled for race or social vulnerability. What does this article add to our knowledge ? For individuals with IEI, hospitalizations for SARS-CoV-2 were associated with race, ethnicity, obesity, and neurologic disease. Specific types of immunodeficiency, organ dysfunction, and social vulnerability were not associated with increased risk of hospitalization. How does this study impact current management guidelines? Current guidelines for the management of IEIs focus on risk conferred by genetic and cellular mechanisms. This study highlights the importance of considering variables linked with social determinants of health and common comorbidities as immunologic risk factors.

4.
J Allergy Clin Immunol ; 152(2): 453-468, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37030590

RESUMO

BACKGROUND: IgE-induced mast cell (MC) degranulation can be inhibited by IgG antibodies, signaling via FcγRIIb, but the effects of IgG on IgE-induced MC transcription are unknown. OBJECTIVE: We sought to assess inhibitory IgG:FcγRIIb effects on MC responses to IgE using complementary transcriptomic and functional approaches. METHODS: RNA sequencing was performed on bone marrow-derived MCs from wild-type and FcγRIIb-deficient mice to identify genes activated following IgE receptor crosslinking that were further modulated in the presence of antigen-specific IgG in an FcγRIIb-dependent fashion. Parallel analyses of signaling pathways and allergic responses in vivo were performed to assess the impact of these changes in gene expression. RESULTS: Rapid changes in the transcription of 879 genes occurred in MCs activated by IgE, peaking at 1 hour. Surprisingly, only 12% of these were altered by IgG signaling via FcγRIIb, including numerous transcripts involved in orchestrating type 2 responses linked to spleen tyrosine kinase signaling. Consistent with this finding, IgG suppressed IgE-induced phospho-intermediates in the spleen tyrosine kinase signaling pathway. In vivo studies confirmed that the IgG-mediated suppression of both systemic anaphylaxis and MC-driven tissue recruitment of inflammatory cells following allergen challenge was dependent on FcγRIIb. In contrast, genes in the STAT5a cell survival pathway were unaltered by IgG, and STAT5a phosphorylation increased after IgE-induced MC activation but was unaffected by IgG. CONCLUSIONS: Our findings indicate that inhibitory IgG:FcγRIIb signals block an IgE-induced proallergic program but spare a prosurvival program.


Assuntos
Anafilaxia , Receptores de IgE , Camundongos , Animais , Receptores de IgG , Quinase Syk/metabolismo , Imunoglobulina E , Mastócitos , Imunoglobulina G , Degranulação Celular
5.
J Allergy Clin Immunol ; 151(1): 21-25, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328809

RESUMO

Mast cells are distributed throughout the gastrointestinal tract and function as the main effector cells of IgE-mediated allergic reactions to foods. Allergen-induced cross-linking of IgE antibodies bound to high-affinity IgE receptors, FcεRI, on the surface of mast cells triggers their activation, resulting in the release of mediators of immediate hypersensitivity. These mediators rapidly induce both local gastrointestinal and systemic physiological responses including anaphylaxis. Emerging evidence has revealed that, in addition to inciting immediate reactions, mast cells are key regulators of adaptive immunity to foods. In the gastrointestinal mucosa they provide the priming cytokines that initiate and, over time, consolidate adaptive TH2 responses to ingested allergens as well as TNF and chemokines that orchestrate the recruitment of tissue-infiltrating leukocytes that drive type 2 tissue inflammation. Patients with atopic dermatitis have increased intestinal mast cell numbers and are at a greater risk for food allergy. Recent studies have uncovered a skin-gut axis in which epicutaneous allergen exposure drives intestinal mast cell expansion. The activating effects of IgE antibodies in mast cells are countered by food-specific IgG antibodies that signal via the inhibitory IgG receptor, FcγR2b, suppressing both immediate allergic reactions to foods and the type 2 immune adjuvant activity of mast cells.


Assuntos
Anafilaxia , Hipersensibilidade Alimentar , Humanos , Mastócitos , Imunoglobulina E , Alérgenos , Receptores de IgE/metabolismo
6.
Front Immunol ; 13: 881655, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865546

RESUMO

Mast cells and basophils have long been implicated in the pathogenesis of IgE-mediated hypersensitivity reactions. They express the high-affinity IgE receptor, FcϵRI, on their surface. Antigen-induced crosslinking of IgE antibodies bound to that receptor triggers a signaling cascade that results in activation, leading to the release of an array of preformed vasoactive mediators and rapidly synthesized lipids, as well as the de novo production of inflammatory cytokines. In addition to bearing activating receptors like FcεRI, these effector cells of allergy express inhibitory ones including FcγR2b, an IgG Fc receptor with a cytosolic inhibitory motif that activates protein tyrosine phosphatases that suppress IgE-mediated activation. We and others have shown that food allergen-specific IgG antibodies strongly induced during the course of oral immunotherapy (OIT), signal via FcγR2b to suppress IgE-mediated mast cell and basophil activation triggered by food allergen challenge. However, the potential inhibitory effects of IgA antibodies, which are also produced in response to OIT and are present at high levels at mucosal sites, including the intestine where food allergens are encountered, have not been well studied. Here we uncover an inhibitory function for IgA. We observe that IgA binds mouse bone marrow-derived mast cells (BMMCs) and peritoneal mast cells. Binding to BMMCs is dependent on calcium and sialic acid. We also found that IgA antibodies inhibit IgE-mediated mast cell degranulation in an allergen-specific fashion. Antigen-specific IgA inhibits IgE-mediated mast cell activation early in the signaling cascade, suppressing the phosphorylation of Syk, the proximal protein kinase mediating FcεRI signaling, and suppresses mast cell production of cytokines. Furthermore, using basophils from a peanut allergic donor we found that IgA binds to basophils and that activation by exposure to peanuts is effectively suppressed by IgA. We conclude that IgA serves as a regulator of mast cell and basophil degranulation, suggesting a physiologic role for IgA in the maintenance of immune homeostasis at mucosal sites.


Assuntos
Basófilos , Hipersensibilidade Alimentar , Alérgenos , Animais , Arachis , Citocinas/metabolismo , Hipersensibilidade Alimentar/metabolismo , Imunoglobulina A/metabolismo , Imunoglobulina E , Imunoglobulina G , Mastócitos , Camundongos , Receptores de IgE/metabolismo , Receptores de IgG/metabolismo
7.
Cell Rep Med ; 2(10): 100410, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34755130

RESUMO

Peanut allergy can result in life-threatening reactions and is a major public health concern. Oral immunotherapy (OIT) induces desensitization to food allergens through administration of increasing amounts of allergen. To dissect peanut-specific immunoglobulin E (IgE) and IgG responses in subjects undergoing OIT, we have developed AllerScan, a method that leverages phage-display and next-generation sequencing to identify the epitope targets of peanut-specific antibodies. We observe a striking diversification and boosting of the peanut-specific IgG repertoire after OIT and a reduction in pre-existing IgE levels against individual epitopes. High-resolution epitope mapping reveals shared recognition of public epitopes in Ara h 1, 2, 3, and 7. In individual subjects, OIT-induced IgG specificities overlap extensively with IgE and exhibit strikingly similar antibody footprints, suggesting related clonal lineages or convergent evolution of peanut-specific IgE and IgG B cells. Individual differences in epitope recognition identified via AllerScan could inform safer and more effective personalized immunotherapy.


Assuntos
Dessensibilização Imunológica/métodos , Mapeamento de Epitopos/métodos , Epitopos/química , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Omalizumab/uso terapêutico , Hipersensibilidade a Amendoim/terapia , Albuminas 2S de Plantas/administração & dosagem , Albuminas 2S de Plantas/química , Antígenos de Plantas/administração & dosagem , Antígenos de Plantas/química , Arachis/química , Arachis/imunologia , Linfócitos B/imunologia , Linfócitos B/patologia , Estudos de Casos e Controles , Epitopos/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Ensaios de Triagem em Larga Escala , Humanos , Proteínas de Membrana/administração & dosagem , Proteínas de Membrana/química , Hipersensibilidade a Amendoim/genética , Hipersensibilidade a Amendoim/imunologia , Hipersensibilidade a Amendoim/patologia , Biblioteca de Peptídeos , Proteínas de Plantas/administração & dosagem , Proteínas de Plantas/química , Medicina de Precisão , Proteínas de Armazenamento de Sementes
8.
Allergy ; 76(9): 2809-2826, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33782956

RESUMO

BACKGROUND: Multifood oral immunotherapy (mOIT) with adjunctive anti-IgE (omalizumab, XOLAIR® ) treatment affords safe, effective, and rapid desensitization to multiple foods, although the specific immune mechanisms mediating this desensitization remain to be fully elucidated. METHODS: Participants in our phase 2 mOIT trial (NCT02643862) received omalizumab from baseline to week 16 and mOIT from week 8 to week 36. We compared the immune profile of PBMCs and plasma taken at baseline, week 8, and week 36 using high-dimensional mass cytometry, component-resolved diagnostics, the indirect basophil activation test, and Luminex. RESULTS: We found (i) decreased frequency of IL-4+ peanut-reactive CD4+ T cells and a marked downregulation of GPR15 expression and CXCR3 frequency among γδ and CD8+ T-cell subsets at week 8 during the initial, omalizumab-alone induction phase; (ii) significant upregulation of the skin-homing receptor CCR4 in peanut-reactive CD4+ T and Th2 effector memory (EM) cells and of cutaneous lymphocyte-associated antigen (CLA) in peanut-reactive CD8+ T and CD8+ EM cells; (iii) downregulation of CD86 expression among antigen-presenting cell subsets; and (iv) reduction in pro-inflammatory cytokines, notably IL-17, at week 36 post-OIT. We also observed significant attenuation of the Th2 phenotype post-OIT, defined by downregulation of IL-4 peanut-reactive T cells and OX40 in Th2EM cells, increased allergen component-specific IgG4/IgE ratio, and decreased allergen-driven activation of indirectly sensitized basophils. CONCLUSIONS: This exploratory study provides novel comprehensive insight into the immune underpinnings of desensitization through omalizumab-facilitated mOIT. Moreover, this study provides encouraging results to support the complex immune changes that can be induced by OIT.


Assuntos
Omalizumab , Hipersensibilidade a Amendoim , Administração Oral , Alérgenos , Dessensibilização Imunológica , Humanos , Imunoglobulina E , Omalizumab/uso terapêutico
9.
Contemp Clin Trials ; 100: 106228, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33242697

RESUMO

Asthma remains one of the most important challenges to pediatric public health in the US. A large majority of children with persistent and chronic asthma demonstrate aeroallergen sensitization, which remains a pivotal risk factor associated with the development of persistent, progressive asthma throughout life. In individuals with a tendency toward Type 2 inflammation, sensitization and exposure to high concentrations of offending allergens is associated with increased risk for development of, and impairment from, asthma. The cascade of biological responses to allergens is primarily mediated through IgE antibodies and their production is further stimulated by IgE responses to antigen exposure. In addition, circulating IgE impairs innate anti-viral immune responses. The latter effect could magnify the effects of another early life exposure associated with increased risk of the development of asthma - viral infections. Omalizumab binds to circulating IgE and thus ablates antigen signaling through IgE-related mechanisms. Further, it has been shown restore IFN-α response to rhinovirus and to reduce asthma exacerbations during the viral season. We therefore hypothesized that early blockade of IgE and IgE mediated responses with omalizumab would prevent the development and reduce the severity of asthma in those at high risk for developing asthma. Herein, we describe a double-blind, placebo-controlled trial of omalizumab in 2-3 year old children at high risk for development of asthma to prevent the development and reduce the severity of asthma. We describe the rationale, methods, and lessons learned in implementing this potentially transformative trial aimed at prevention of asthma.


Assuntos
Antiasmáticos , Asma , Antiasmáticos/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Asma/tratamento farmacológico , Asma/prevenção & controle , Criança , Humanos , Imunoglobulina E , Omalizumab/uso terapêutico
11.
Front Immunol ; 11: 603050, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362785

RESUMO

Food allergy is a major health issue, affecting the lives of 8% of U.S. children and their families. There is an urgent need to identify the environmental and endogenous signals that induce and sustain allergic responses to ingested allergens. Acute reactions to foods are triggered by the activation of mast cells and basophils, both of which release inflammatory mediators that lead to a range of clinical manifestations, including gastrointestinal, cutaneous, and respiratory reactions as well as systemic anaphylaxis. Both of these innate effector cell types express the high affinity IgE receptor, FcϵRI, on their surface and are armed for adaptive antigen recognition by very-tightly bound IgE antibodies which, when cross-linked by polyvalent allergen, trigger degranulation. These cells also express inhibitory receptors, including the IgG Fc receptor, FcγRIIb, that suppress their IgE-mediated activation. Recent studies have shown that natural resolution of food allergies is associated with increasing food-specific IgG levels. Furthermore, oral immunotherapy, the sequential administration of incrementally increasing doses of food allergen, is accompanied by the strong induction of allergen-specific IgG antibodies in both human subjects and murine models. These can deliver inhibitory signals via FcγRIIb that block IgE-induced immediate food reactions. In addition to their role in mediating immediate hypersensitivity reactions, mast cells and basophils serve separate but critical functions as adjuvants for type 2 immunity in food allergy. Mast cells and basophils, activated by IgE, are key sources of IL-4 that tilts the immune balance away from tolerance and towards type 2 immunity by promoting the induction of Th2 cells along with the innate effectors of type 2 immunity, ILC2s, while suppressing the development of regulatory T cells and driving their subversion to a pathogenic pro-Th2 phenotype. This adjuvant effect of mast cells and basophils is suppressed when inhibitory signals are delivered by IgG antibodies signaling via FcγRIIb. This review summarizes current understanding of the immunoregulatory effects of mast cells and basophils and how these functions are modulated by IgE and IgG antibodies. Understanding these pathways could provide important insights into innovative strategies for preventing and/or reversing food allergy in patients.


Assuntos
Basófilos/metabolismo , Hipersensibilidade Alimentar/metabolismo , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Mastócitos/metabolismo , Receptores Fc/metabolismo , Alérgenos/administração & dosagem , Animais , Basófilos/imunologia , Dessensibilização Imunológica , Hipersensibilidade Alimentar/sangue , Hipersensibilidade Alimentar/imunologia , Hipersensibilidade Alimentar/terapia , Humanos , Mastócitos/imunologia , Fenótipo , Transdução de Sinais , Resultado do Tratamento
12.
Yale J Biol Med ; 93(5): 711-718, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33380933

RESUMO

Mast cells are a critical first line of defense against endogenous and environmental threats. Their participation in innate immunity is well characterized; activation of toll like receptors as well as receptors for complement, adenosine, and a host of other ligands leads to mast cell release of preformed mediators contained within granules along with newly synthesized arachidonic acid metabolites, cytokines, and chemokines. These confer protective effects including the induction of mucus secretion, smooth muscle contraction, and activation of common itch and pain sensations, all of which act to promote expulsion of noxious agents. While their innate immune role as sentinel cells is well established, recent research has brought into focus their separate but also critical function in adaptive immunity particularly in the setting of IgE mediated food allergies. Crosslinking of FcεR1, the high affinity receptor for IgE, when bound to IgE and antigen, triggers the release of the same factors and elicits the same physiologic responses that occur after activation by innate stimuli. Though IgE-activated mast cells are best known for their role in acute allergic reactions, including the most severe manifestation, anaphylaxis, accumulating evidence has suggested an immunoregulatory effect in T cell-mediated immunity, modulating the balance between type 2 immunity and tolerance. In this review, we outline how mast cells act as adjuvants for food antigen driven Th2 cell responses, while curtailing Treg function.


Assuntos
Hipersensibilidade Alimentar , Mastócitos , Imunidade Adaptativa , Alérgenos , Humanos , Imunoglobulina E
13.
Adv Immunol ; 148: 93-153, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33190734

RESUMO

Mast cells and IgE are most familiar as the effectors of type I hypersensitivity reactions including anaphylaxis. It is becoming clear however that this pair has important immunomodulatory effects on innate and adaptive cells of the immune system. In this purview, they act as endogenous adjuvants to ignite evolving immune responses, promote the transition of allergic disease into chronic illness and disrupt the development of active mechanisms of tolerance to ingested foods. Suppression of IgE-mediated mast cell activation can be exerted by molecules targeting IgE, FcɛRI or signaling kinases including Syk, or by IgG antibodies acting via inhibitory Fcγ receptors. In 2015 we reviewed the evidence for the adjuvant functions of mast cells. This update includes the original text, incorporates some important developments in the field over the past five years and discusses how interventions targeting these pathways might have promise in the development of strategies to treat allergic disease.


Assuntos
Dessensibilização Imunológica/métodos , Hipersensibilidade Alimentar/imunologia , Imunoglobulina E/metabolismo , Mastócitos/imunologia , Receptores de IgG/metabolismo , Linfócitos T Reguladores/imunologia , Células Th2/imunologia , Animais , Humanos , Tolerância Imunológica , Imunomodulação
14.
Immunity ; 53(6): 1202-1214.e6, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33086036

RESUMO

The mechanisms by which regulatory T (Treg) cells differentially control allergic and autoimmune responses remain unclear. We show that Treg cells in food allergy (FA) had decreased expression of transforming growth factor beta 1 (TGF-ß1) because of interleukin-4 (IL-4)- and signal transducer and activator of transciription-6 (STAT6)-dependent inhibition of Tgfb1 transcription. These changes were modeled by Treg cell-specific Tgfb1 monoallelic inactivation, which induced allergic dysregulation by impairing microbiota-dependent retinoic acid receptor-related orphan receptor gamma t (ROR-γt)+ Treg cell differentiation. This dysregulation was rescued by treatment with Clostridiales species, which upregulated Tgfb1 expression in Treg cells. Biallelic deficiency precipitated fatal autoimmunity with intense autoantibody production and dysregulated T follicular helper and B cell responses. These results identify a privileged role of Treg cell-derived TGF-ß1 in regulating allergy and autoimmunity at distinct checkpoints in a Tgfb1 gene dose- and microbiota-dependent manner.


Assuntos
Autoimunidade/imunologia , Hipersensibilidade/imunologia , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta1/imunologia , Adolescente , Animais , Autoimunidade/genética , Linfócitos B/imunologia , Diferenciação Celular , Criança , Pré-Escolar , Hipersensibilidade Alimentar/imunologia , Dosagem de Genes , Humanos , Hipersensibilidade/genética , Imunoglobulina G/imunologia , Lactente , Mastócitos/imunologia , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Células T Auxiliares Foliculares/imunologia , Linfócitos T Reguladores/metabolismo , Transcrição Gênica , Fator de Crescimento Transformador beta1/genética , Adulto Jovem
15.
J Allergy Clin Immunol ; 146(4): 884-893.e5, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32194041

RESUMO

BACKGROUND: Patients with eosinophilic esophagitis have increased numbers of mucosal mast cells. Administration of the proton pump inhibitor omeprazole can reduce both esophageal mast cell and eosinophil numbers and attenuate type 2 inflammation in these subjects. OBJECTIVE: Given that maintenance of an acidic environment within granules is important for mast cell homeostasis, we sought to evaluate the effects of omeprazole on mast cell functions including development, IgE:FcεRI-mediated activation, and responses to food allergen. METHODS: Mast cell degranulation, cytokine secretion, and early signaling events in the FcεRI pathway, including protein kinase phosphorylation and Ca2+ flux, were measured after IgE crosslinking in murine bone marrow-derived mast cells and human cord blood-derived mast cells. The effects of omeprazole on these responses were investigated as was its impact on mast cell-dependent anaphylaxis and food allergy phenotypes in vivo. RESULTS: Murine and human mast cells treated with omeprazole exhibited diminished degranulation and release of cytokines and histamine in response to allergen. In murine mast cells, phosphorylation of protein kinases, ERK and SYK, was decreased. Differentiation of mast cells from bone marrow progenitors was also inhibited. IgE-mediated passive anaphylaxis was blunted in mice treated with omeprazole as was allergen-induced mast cell expansion and mast cell activation in the intestine in a model of food allergy. CONCLUSIONS: Our findings suggest that omeprazole targets pathways important for the differentiation and activation of murine mast cells and for the manifestations of food allergy and anaphylaxis.


Assuntos
Alérgenos/imunologia , Hipersensibilidade Alimentar/imunologia , Imunoglobulina E/imunologia , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Omeprazol/farmacologia , Animais , Degranulação Celular , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Hipersensibilidade Alimentar/tratamento farmacológico , Hipersensibilidade Alimentar/metabolismo , Hipersensibilidade Alimentar/patologia , Humanos , Mediadores da Inflamação/metabolismo , Mastócitos/metabolismo , Camundongos , Receptores de IgE/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Front Immunol ; 9: 1244, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29928276

RESUMO

Immediate hypersensitivity reactions are induced by the interaction of allergens with specific IgE antibodies bound via FcεRI to mast cells and basophils. While these specific IgE antibodies are needed to trigger such reactions, not all individuals harboring IgE exhibit symptoms of allergy. The lack of responsiveness seen in some subjects correlates with the presence of IgG antibodies of the same specificity. In cell culture studies and in vivo animal models of food allergy and anaphylaxis such IgG antibodies have been shown to exert suppression via FcγRIIb. However, the reported absence of this inhibitory receptor on primary mast cells derived from human skin has raised questions about the role of IgG-mediated inhibition of immediate hypersensitivity in human subjects. Here, we tested the hypothesis that mast cell FcγRIIb expression might be tissue specific. Utilizing a combination of flow cytometry, quantitative PCR, and immunofluorescence staining of mast cells derived from the tissues of humanized mice, human skin, or in fixed paraffin-embedded sections of human tissues, we confirm that FcγRIIb is absent from dermal mast cells but is expressed by mast cells throughout the gastrointestinal tract. IgE-induced systemic anaphylaxis in humanized mice is strongly inhibited by antigen-specific IgG. These findings support the concept that IgG, signaling via FcγRIIb, plays a physiological role in suppressing hypersensitivity reactions.


Assuntos
Regulação da Expressão Gênica , Mastócitos/imunologia , Mastócitos/metabolismo , Receptores de IgG/genética , Alérgenos/imunologia , Anafilaxia/genética , Anafilaxia/imunologia , Anafilaxia/metabolismo , Animais , Citometria de Fluxo , Humanos , Hipersensibilidade/genética , Hipersensibilidade/imunologia , Hipersensibilidade/metabolismo , Imunoglobulina G/biossíntese , Imunoglobulina G/imunologia , Imunofenotipagem , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Receptores de IgG/metabolismo
18.
Nat Rev Dis Primers ; 4: 17098, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29300005

RESUMO

Food allergies manifest in a variety of clinical conditions within the gastrointestinal tract, skin and lungs, with the most dramatic and sometimes fatal manifestation being anaphylactic shock. Major progress has been made in basic, translational and clinical research, leading to a better understanding of the underlying immunological mechanisms that lead to the breakdown of clinical and immunological tolerance against food antigens, which can result in either immunoglobulin E (IgE)-mediated reactions or non-IgE-mediated reactions. Lifestyle factors, dietary habits and maternal-neonatal interactions play a pivotal part in triggering the onset of food allergies, including qualitative and quantitative composition of the microbiota. These factors seem to have the greatest influence early in life, an observation that has led to the generation of hypotheses to explain the food allergy epidemic, including the dual-allergen exposure hypothesis. These hypotheses have fuelled research in preventive strategies that seek to establish desensitization to allergens and/or tolerance to allergens in affected individuals. Allergen-nonspecific therapeutic strategies have also been investigated in a number of clinical trials, which will eventually improve the treatment options for patients with food allergy.


Assuntos
Hipersensibilidade Alimentar/fisiopatologia , Hipersensibilidade/complicações , Imunoglobulina E/fisiologia , Esofagite Eosinofílica/complicações , Esofagite Eosinofílica/diagnóstico , Esofagite Eosinofílica/fisiopatologia , Hipersensibilidade Alimentar/dietoterapia , Hipersensibilidade Alimentar/epidemiologia , Humanos , Imunoglobulina E/análise , Imunoglobulina E/metabolismo , Programas de Rastreamento/métodos , Proctocolite/complicações , Proctocolite/diagnóstico , Proctocolite/fisiopatologia
19.
J Allergy Clin Immunol ; 141(1): 189-201.e3, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28479335

RESUMO

BACKGROUND: Patients with food allergy produce high-titer IgE antibodies that bind to mast cells through FcεRI and trigger immediate hypersensitivity reactions on antigen encounter. Food-specific IgG antibodies arise in the setting of naturally resolving food allergy and accompany the acquisition of food allergen unresponsiveness in oral immunotherapy. OBJECTIVE: In this study we sought to delineate the effects of IgG and its inhibitory Fc receptor, FcγRIIb, on both de novo allergen sensitization in naive animals and on established immune responses in the setting of pre-existing food allergy. METHODS: Allergen-specific IgG was administered to mice undergoing sensitization and desensitization to the model food allergen ovalbumin. Cellular and molecular mechanisms were interrogated by using mast cell- and FcγRIIb-deficient mice. The requirement for FcγRII in IgG-mediated inhibition of human mast cells was investigated by using a neutralizing antibody. RESULTS: Administration of specific IgG to food allergy-prone IL4raF709 mice during initial food exposure prevented the development of IgE antibodies, TH2 responses, and anaphylactic responses on challenge. When given as an adjunct to oral desensitization in mice with established IgE-mediated hypersensitivity, IgG facilitated tolerance restoration, favoring expansion of forkhead box protein 3-positive regulatory T cells along with suppression of existing TH2 and IgE responses. IgG and FcγRIIb suppress adaptive allergic responses through effects on mast cell function. CONCLUSION: These findings suggest that allergen-specific IgG antibodies can act to induce and sustain immunologic tolerance to foods.


Assuntos
Alérgenos/imunologia , Hipersensibilidade a Ovo/imunologia , Tolerância Imunológica , Imunoglobulina G/imunologia , Receptores de IgG/imunologia , Transdução de Sinais/imunologia , Alérgenos/farmacologia , Animais , Modelos Animais de Doenças , Hipersensibilidade a Ovo/tratamento farmacológico , Hipersensibilidade a Ovo/genética , Hipersensibilidade a Ovo/patologia , Mastócitos/metabolismo , Mastócitos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Receptores de IgG/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Células Th2/imunologia , Células Th2/patologia
20.
J Allergy Clin Immunol ; 139(1): 314-322.e9, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27417025

RESUMO

BACKGROUND: Food allergy is a growing health problem with very limited treatment options. Investigation of the immunologic pathways underlying allergic sensitization to foods in humans has been greatly constrained by the limited availability of intestinal tissue and gut-resident immune cells. Although mouse models have offered insights into pathways of food sensitization, differences between rodent and human immune physiology limit the extension of these findings to our understanding of human disease. OBJECTIVE: We sought to develop a strategy for the generation of mice with humanized adaptive immune systems, complete with tissue engraftment by human mast cells that are competent to mount specific IgE-mediated responses and drive systemic anaphylaxis on ingestion challenge. METHODS: Nonobese diabetic severe combined immunodeficient mice lacking the cytokine receptor common gamma chain (γc-/-) and carrying a human stem cell factor transgene were engrafted with human hematopoietic stem cells. The impact of peanut (PN) feeding and IgE neutralization on the development of immune responses, mast cell homeostasis, and anaphylactic food allergy was assessed in these animals. RESULTS: Humanized nonobese diabetic severe combined immunodeficient common gamma chain-deficient stem cell factor (huNSG) mice exhibited robust engraftment with functional human T and B lymphocytes and human mast cells were found in significant numbers in their tissues, including the intestinal mucosa. Following gavage feeding with PN, they mounted specific antibody responses, including PN-specific IgE. When enterally challenged with PN, they exhibited mast-cell-mediated systemic anaphylaxis, as indicated by hypothermia and increases in plasma tryptase levels. Anti-IgE (omalizumab) treatment ablated this anaphylactic response. CONCLUSIONS: huNSG mice provide a novel tool for studying food allergy and IgE-mediated anaphylaxis.


Assuntos
Anafilaxia/imunologia , Modelos Animais de Doenças , Hipersensibilidade a Amendoim/imunologia , Anafilaxia/tratamento farmacológico , Animais , Antialérgicos/uso terapêutico , Linfócitos B/imunologia , Transplante de Células-Tronco Hematopoéticas , Humanos , Imunoglobulina E/imunologia , Mastócitos/imunologia , Camundongos Transgênicos , Omalizumab/uso terapêutico , Hipersensibilidade a Amendoim/tratamento farmacológico , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA