Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Biomed Inform ; 154: 104650, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701887

RESUMO

BACKGROUND: Distinguishing diseases into distinct subtypes is crucial for study and effective treatment strategies. The Open Targets Platform (OT) integrates biomedical, genetic, and biochemical datasets to empower disease ontologies, classifications, and potential gene targets. Nevertheless, many disease annotations are incomplete, requiring laborious expert medical input. This challenge is especially pronounced for rare and orphan diseases, where resources are scarce. METHODS: We present a machine learning approach to identifying diseases with potential subtypes, using the approximately 23,000 diseases documented in OT. We derive novel features for predicting diseases with subtypes using direct evidence. Machine learning models were applied to analyze feature importance and evaluate predictive performance for discovering both known and novel disease subtypes. RESULTS: Our model achieves a high (89.4%) ROC AUC (Area Under the Receiver Operating Characteristic Curve) in identifying known disease subtypes. We integrated pre-trained deep-learning language models and showed their benefits. Moreover, we identify 515 disease candidates predicted to possess previously unannotated subtypes. CONCLUSIONS: Our models can partition diseases into distinct subtypes. This methodology enables a robust, scalable approach for improving knowledge-based annotations and a comprehensive assessment of disease ontology tiers. Our candidates are attractive targets for further study and personalized medicine, potentially aiding in the unveiling of new therapeutic indications for sought-after targets.


Assuntos
Aprendizado de Máquina , Humanos , Doença/classificação , Curva ROC , Biologia Computacional/métodos , Algoritmos , Aprendizado Profundo
2.
NAR Genom Bioinform ; 6(1): lqae021, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486884

RESUMO

Many advances in biomedicine can be attributed to identifying unusual proteins and genes. Many of these proteins' unique properties were discovered by manual inspection, which is becoming infeasible at the scale of modern protein datasets. Here, we propose to tackle this challenge using anomaly detection methods that automatically identify unexpected properties. We adopt a state-of-the-art anomaly detection paradigm from computer vision, to highlight unusual proteins. We generate meaningful representations without labeled inputs, using pretrained deep neural network models. We apply these protein language models (pLM) to detect anomalies in function, phylogenetic families, and segmentation tasks. We compute protein anomaly scores to highlight human prion-like proteins, distinguish viral proteins from their host proteome, and mark non-classical ion/metal binding proteins and enzymes. Other tasks concern segmentation of protein sequences into folded and unstructured regions. We provide candidates for rare functionality (e.g. prion proteins). Additionally, we show the anomaly score is useful in 3D folding-related segmentation. Our novel method shows improved performance over strong baselines and has objectively high performance across a variety of tasks. We conclude that the combination of pLM and anomaly detection techniques is a valid method for discovering a range of global and local protein characteristics.

3.
Heliyon ; 10(1): e23781, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38223716

RESUMO

Scientific research trends and interests evolve over time. The ability to identify and forecast these trends is vital for educational institutions, practitioners, investors, and funding organizations. In this study, we predict future trends in scientific publications using heterogeneous sources, including historical publication time series from PubMed, research and review articles, pre-trained language models, and patents. We demonstrate that scientific topic popularity levels and changes (trends) can be predicted five years in advance across 40 years and 125 diverse topics, including life-science concepts, biomedical, anatomy, and other science, technology, and engineering topics. Preceding publications and future patents are leading indicators for emerging scientific topics. We find the ratio of reviews to original research articles informative for identifying increasing or declining topics, with declining topics having an excess of reviews. We find that language models provide improved insights and predictions into temporal dynamics. In temporal validation, our models substantially outperform the historical baseline. Our findings suggest that similar dynamics apply across other scientific and engineering research topics. We present SciTrends, a user-friendly webtool for predicting future publication trends for any topic covered in PubMed.

4.
Front Mol Biosci ; 9: 916639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158574

RESUMO

Post-transcriptional regulation in multicellular organisms is mediated by microRNAs. However, the principles that determine if a gene is regulated by miRNAs are poorly understood. Previous works focused mostly on miRNA seed matches and other features of the 3'-UTR of transcripts. These common approaches rely on knowledge of the miRNA families, and computational approaches still yield poor, inconsistent results, with many false positives. In this work, we present a different paradigm for predicting miRNA-regulated genes based on the encoded proteins. In a novel, automated machine learning framework, we use sequence as well as diverse functional annotations to train models on multiple organisms using experimentally validated data. We present insights from tens of millions of features extracted and ranked from different modalities. We show high predictive performance per organism and in generalization across species. We provide a list of novel predictions including Danio rerio (zebrafish) and Arabidopsis thaliana (mouse-ear cress). We compare genomic models and observe that our protein model outperforms, whereas a unified model improves on both. While most membranous and disease related proteins are regulated by miRNAs, the G-protein coupled receptor (GPCR) family is an exception, being mostly unregulated by miRNAs. We further show that the evolutionary conservation among paralogs does not imply any coherence in miRNA regulation. We conclude that duplicated paralogous genes that often changed their function, also diverse in their tendency to be miRNA regulated. We conclude that protein function is informative across species in predicting post-transcriptional miRNA regulation in living cells.

5.
J Pers Med ; 12(7)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35887611

RESUMO

Endometriosis is a condition characterized by implants of endometrial tissues into extrauterine sites, mostly within the pelvic peritoneum. The prevalence of endometriosis is under-diagnosed and is estimated to account for 5-10% of all women of reproductive age. The goal of this study was to develop a model for endometriosis based on the UK-biobank (UKB) and re-assess the contribution of known risk factors to endometriosis. We partitioned the data into those diagnosed with endometriosis (5924; ICD-10: N80) and a control group (142,723). We included over 1000 variables from the UKB covering personal information about female health, lifestyle, self-reported data, genetic variants, and medical history prior to endometriosis diagnosis. We applied machine learning algorithms to train an endometriosis prediction model. The optimal prediction was achieved with the gradient boosting algorithms of CatBoost for the data-combined model with an area under the ROC curve (ROC-AUC) of 0.81. The same results were obtained for women from a mixed ethnicity population of the UKB (7112; ICD-10: N80). We discovered that, prior to being diagnosed with endometriosis, affected women had significantly more ICD-10 diagnoses than the average unaffected woman. We used SHAP, an explainable AI tool, to estimate the marginal impact of a feature, given all other features. The informative features ranked by SHAP values included irritable bowel syndrome (IBS) and the length of the menstrual cycle. We conclude that the rich population-based retrospective data from the UKB are valuable for developing unified machine learning endometriosis models despite the limitations of missing data, noisy medical input, and participant age. The informative features of the model may improve clinical utility for endometriosis diagnosis.

6.
Bioinformatics ; 38(8): 2102-2110, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35020807

RESUMO

SUMMARY: Self-supervised deep language modeling has shown unprecedented success across natural language tasks, and has recently been repurposed to biological sequences. However, existing models and pretraining methods are designed and optimized for text analysis. We introduce ProteinBERT, a deep language model specifically designed for proteins. Our pretraining scheme combines language modeling with a novel task of Gene Ontology (GO) annotation prediction. We introduce novel architectural elements that make the model highly efficient and flexible to long sequences. The architecture of ProteinBERT consists of both local and global representations, allowing end-to-end processing of these types of inputs and outputs. ProteinBERT obtains near state-of-the-art performance, and sometimes exceeds it, on multiple benchmarks covering diverse protein properties (including protein structure, post-translational modifications and biophysical attributes), despite using a far smaller and faster model than competing deep-learning methods. Overall, ProteinBERT provides an efficient framework for rapidly training protein predictors, even with limited labeled data. AVAILABILITY AND IMPLEMENTATION: Code and pretrained model weights are available at https://github.com/nadavbra/protein_bert. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aprendizado Profundo , Sequência de Aminoácidos , Proteínas/química , Idioma , Processamento de Linguagem Natural
7.
Comput Struct Biotechnol J ; 19: 1750-1758, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897979

RESUMO

Natural language processing (NLP) is a field of computer science concerned with automated text and language analysis. In recent years, following a series of breakthroughs in deep and machine learning, NLP methods have shown overwhelming progress. Here, we review the success, promise and pitfalls of applying NLP algorithms to the study of proteins. Proteins, which can be represented as strings of amino-acid letters, are a natural fit to many NLP methods. We explore the conceptual similarities and differences between proteins and language, and review a range of protein-related tasks amenable to machine learning. We present methods for encoding the information of proteins as text and analyzing it with NLP methods, reviewing classic concepts such as bag-of-words, k-mers/n-grams and text search, as well as modern techniques such as word embedding, contextualized embedding, deep learning and neural language models. In particular, we focus on recent innovations such as masked language modeling, self-supervised learning and attention-based models. Finally, we discuss trends and challenges in the intersection of NLP and protein research.

8.
Toxins (Basel) ; 9(11)2017 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-29109389

RESUMO

Short stable peptides have huge potential for novel therapies and biosimilars. Cysteine-rich short proteins are characterized by multiple disulfide bridges in a compact structure. Many of these metazoan proteins are processed, folded, and secreted as soluble stable folds. These properties are shared by both marine and terrestrial animal toxins. These stable short proteins are promising sources for new drug development. We developed ClanTox (classifier of animal toxins) to identify toxin-like proteins (TOLIPs) using machine learning models trained on a large-scale proteomic database. Insects proteomes provide a rich source for protein innovations. Therefore, we seek overlooked toxin-like proteins from insects (coined iTOLIPs). Out of 4180 short (<75 amino acids) secreted proteins, 379 were predicted as iTOLIPs with high confidence, with as many as 30% of the genes marked as uncharacterized. Based on bioinformatics, structure modeling, and data-mining methods, we found that the most significant group of predicted iTOLIPs carry antimicrobial activity. Among the top predicted sequences were 120 termicin genes from termites with antifungal properties. Structural variations of insect antimicrobial peptides illustrate the similarity to a short version of the defensin fold with antifungal specificity. We also identified 9 proteins that strongly resemble ion channel inhibitors from scorpion and conus toxins. Furthermore, we assigned functional fold to numerous uncharacterized iTOLIPs. We conclude that a systematic approach for finding iTOLIPs provides a rich source of peptides for drug design and innovative therapeutic discoveries.


Assuntos
Desenho de Fármacos , Proteínas de Insetos , Toxinas Biológicas , Animais , Antibacterianos/química , Antifúngicos/química , Proteínas de Insetos/química , Insetos , Canais Iônicos/antagonistas & inibidores , Aprendizado de Máquina , Modelos Moleculares , Peptídeos/química , Proteômica , Toxinas Biológicas/química
9.
Artigo em Inglês | MEDLINE | ID: mdl-27694209

RESUMO

Determining residue-level protein properties, such as sites of post-translational modifications (PTMs), is vital to understanding protein function. Experimental methods are costly and time-consuming, while traditional rule-based computational methods fail to annotate sites lacking substantial similarity. Machine Learning (ML) methods are becoming fundamental in annotating unknown proteins and their heterogeneous properties. We present ASAP (Amino-acid Sequence Annotation Prediction), a universal ML framework for predicting residue-level properties. ASAP extracts numerous features from raw sequences, and supports easy integration of external features such as secondary structure, solvent accessibility, intrinsically disorder or PSSM profiles. Features are then used to train ML classifiers. ASAP can create new classifiers within minutes for a variety of tasks, including PTM prediction (e.g. cleavage sites by convertase, phosphoserine modification). We present a detailed case study for ASAP: CleavePred, an ASAP-based model to predict protein precursor cleavage sites, with state-of-the-art results. Protein cleavage is a PTM shared by a wide variety of proteins sharing minimal sequence similarity. Current rule-based methods suffer from high false positive rates, making them suboptimal. The high performance of CleavePred makes it suitable for analyzing new proteomes at a genomic scale. The tool is attractive to protein design, mass spectrometry search engines and the discovery of new bioactive peptides from precursors. ASAP functions as a baseline approach for residue-level protein sequence prediction. CleavePred is freely accessible as a web-based application. Both ASAP and CleavePred are open-source with a flexible Python API.Database URL: ASAP's and CleavePred source code, webtool and tutorials are available at: https://github.com/ddofer/asap; http://protonet.cs.huji.ac.il/cleavepred.


Assuntos
Aprendizado de Máquina , Anotação de Sequência Molecular/métodos , Peptídeos/genética , Peptídeos/metabolismo , Análise de Sequência de Proteína/métodos , Internet
10.
Genome Biol ; 17(1): 184, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27604469

RESUMO

BACKGROUND: A major bottleneck in our understanding of the molecular underpinnings of life is the assignment of function to proteins. While molecular experiments provide the most reliable annotation of proteins, their relatively low throughput and restricted purview have led to an increasing role for computational function prediction. However, assessing methods for protein function prediction and tracking progress in the field remain challenging. RESULTS: We conducted the second critical assessment of functional annotation (CAFA), a timed challenge to assess computational methods that automatically assign protein function. We evaluated 126 methods from 56 research groups for their ability to predict biological functions using Gene Ontology and gene-disease associations using Human Phenotype Ontology on a set of 3681 proteins from 18 species. CAFA2 featured expanded analysis compared with CAFA1, with regards to data set size, variety, and assessment metrics. To review progress in the field, the analysis compared the best methods from CAFA1 to those of CAFA2. CONCLUSIONS: The top-performing methods in CAFA2 outperformed those from CAFA1. This increased accuracy can be attributed to a combination of the growing number of experimental annotations and improved methods for function prediction. The assessment also revealed that the definition of top-performing algorithms is ontology specific, that different performance metrics can be used to probe the nature of accurate predictions, and the relative diversity of predictions in the biological process and human phenotype ontologies. While there was methodological improvement between CAFA1 and CAFA2, the interpretation of results and usefulness of individual methods remain context-dependent.


Assuntos
Biologia Computacional , Proteínas/química , Software , Relação Estrutura-Atividade , Algoritmos , Bases de Dados de Proteínas , Ontologia Genética , Humanos , Anotação de Sequência Molecular , Proteínas/genética
11.
Bioinformatics ; 31(21): 3429-36, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26130574

RESUMO

MOTIVATION: The amount of sequenced genomes and proteins is growing at an unprecedented pace. Unfortunately, manual curation and functional knowledge lag behind. Homologous inference often fails at labeling proteins with diverse functions and broad classes. Thus, identifying high-level protein functionality remains challenging. We hypothesize that a universal feature engineering approach can yield classification of high-level functions and unified properties when combined with machine learning approaches, without requiring external databases or alignment. RESULTS: In this study, we present a novel bioinformatics toolkit called ProFET (Protein Feature Engineering Toolkit). ProFET extracts hundreds of features covering the elementary biophysical and sequence derived attributes. Most features capture statistically informative patterns. In addition, different representations of sequences and the amino acids alphabet provide a compact, compressed set of features. The results from ProFET were incorporated in data analysis pipelines, implemented in python and adapted for multi-genome scale analysis. ProFET was applied on 17 established and novel protein benchmark datasets involving classification for a variety of binary and multi-class tasks. The results show state of the art performance. The extracted features' show excellent biological interpretability. The success of ProFET applies to a wide range of high-level functions such as subcellular localization, structural classes and proteins with unique functional properties (e.g. neuropeptide precursors, thermophilic and nucleic acid binding). ProFET allows easy, universal discovery of new target proteins, as well as understanding the features underlying different high-level protein functions. AVAILABILITY AND IMPLEMENTATION: ProFET source code and the datasets used are freely available at https://github.com/ddofer/ProFET. CONTACT: michall@cc.huji.ac.il SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Aminoácidos/química , Biologia Computacional/métodos , Proteínas/metabolismo , Análise de Sequência de Proteína/métodos , Bases de Dados de Proteínas , Genoma Humano , Humanos , Aprendizado de Máquina , Proteínas/química
12.
Nucleic Acids Res ; 42(Web Server issue): W182-6, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24792159

RESUMO

Neuropeptides (NPs) are short secreted peptides produced in neurons. NPs act by activating signaling cascades governing broad functions such as metabolism, sensation and behavior throughout the animal kingdom. NPs are the products of multistep processing of longer proteins, the NP precursors (NPPs). We present NeuroPID (Neuropeptide Precursor Identifier), an online machine-learning tool that identifies metazoan NPPs. NeuroPID was trained on 1418 NPPs annotated as such by UniProtKB. A large number of sequence-based features were extracted for each sequence with the goal of capturing the biophysical and informational-statistical properties that distinguish NPPs from other proteins. Training several machine-learning models, including support vector machines and ensemble decision trees, led to high accuracy (89-94%) and precision (90-93%) in cross-validation tests. For inputs of thousands of unseen sequences, the tool provides a ranked list of high quality predictions based on the results of four machine-learning classifiers. The output reveals many uncharacterized NPPs and secreted cell modulators that are rich in potential cleavage sites. NeuroPID is a discovery and a prediction tool that can be used to identify NPPs from unannotated transcriptomes and mass spectrometry experiments. NeuroPID predicted sequences are attractive targets for investigating behavior, physiology and cell modulation. The NeuroPID web tool is available at http:// neuropid.cs.huji.ac.il.


Assuntos
Neuropeptídeos/classificação , Precursores de Proteínas/classificação , Software , Animais , Inteligência Artificial , Genômica , Humanos , Internet , Neuropeptídeos/química , Neuropeptídeos/genética , Precursores de Proteínas/química , Precursores de Proteínas/genética , Análise de Sequência de Proteína
13.
Bioinformatics ; 30(7): 931-40, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24336809

RESUMO

MOTIVATION: The evolution of multicellular organisms is associated with increasing variability of molecules governing behavioral and physiological states. This is often achieved by neuropeptides (NPs) that are produced in neurons from a longer protein, named neuropeptide precursor (NPP). The maturation of NPs occurs through a sequence of proteolytic cleavages. The difficulty in identifying NPPs is a consequence of their diversity and the lack of applicable sequence similarity among the short functionally related NPs. RESULTS: Herein, we describe Neuropeptide Precursor Identifier (NeuroPID), a machine learning scheme that predicts metazoan NPPs. NeuroPID was trained on hundreds of identified NPPs from the UniProtKB database. Some 600 features were extracted from the primary sequences and processed using support vector machines (SVM) and ensemble decision tree classifiers. These features combined biophysical, chemical and informational-statistical properties of NPs and NPPs. Other features were guided by the defining characteristics of the dibasic cleavage sites motif. NeuroPID reached 89-94% accuracy and 90-93% precision in cross-validation blind tests against known NPPs (with an emphasis on Chordata and Arthropoda). NeuroPID also identified NPP-like proteins from extensively studied model organisms as well as from poorly annotated proteomes. We then focused on the most significant sets of features that contribute to the success of the classifiers. We propose that NPPs are attractive targets for investigating and modulating behavior, metabolism and homeostasis and that a rich repertoire of NPs remains to be identified. AVAILABILITY: NeuroPID source code is freely available at http://www.protonet.cs.huji.ac.il/neuropid


Assuntos
Inteligência Artificial , Neuropeptídeos/análise , Proteoma/análise , Software , Sequência de Aminoácidos , Animais , Bases de Dados Genéticas , Insetos , Dados de Sequência Molecular , Neuropeptídeos/química , Precursores de Proteínas/análise , Proteoma/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Máquina de Vetores de Suporte
14.
Toxins (Basel) ; 5(7): 1314-31, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23881252

RESUMO

ClanTox (classifier of animal toxins) was developed for identifying toxin-like candidates from complete proteomes. Searching mammalian proteomes for short toxin-like proteins (coined TOLIPs) revealed a number of overlooked secreted short proteins with an abundance of cysteines throughout their sequences. We applied bioinformatics and data-mining methods to infer the function of several top predicted candidates. We focused on cysteine-rich peptides that adopt the fold of the three-finger proteins (TFPs). We identified a cluster of duplicated genes that share a structural similarity with elapid neurotoxins, such as α-bungarotoxin. In the murine proteome, there are about 60 such proteins that belong to the Ly6/uPAR family. These proteins are secreted or anchored to the cell membrane. Ly6/uPAR proteins are associated with a rich repertoire of functions, including binding to receptors and adhesion. Ly6/uPAR proteins modulate cell signaling in the context of brain functions and cells of the innate immune system. We postulate that TOLIPs, as modulators of cell signaling, may be associated with pathologies and cellular imbalance. We show that proteins of the Ly6/uPAR family are associated with cancer diagnosis and malfunction of the immune system.


Assuntos
Imunidade Inata/efeitos dos fármacos , Neurotoxinas/toxicidade , Venenos de Serpentes/toxicidade , Sequência de Aminoácidos , Animais , Antígenos Ly/genética , Antígenos Ly/metabolismo , Biologia Computacional , Humanos , Camundongos , Dados de Sequência Molecular , Família Multigênica , Neoplasias/diagnóstico , Conformação Proteica , Proteoma/genética , Proteoma/metabolismo , Alinhamento de Sequência , Transdução de Sinais , Transcriptoma , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA