Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nat Rev Cancer ; 24(3): 216-228, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38238471

RESUMO

Metastasis causes most cancer-related deaths; however, the efficacy of anti-metastatic drugs is limited by incomplete understanding of the biological mechanisms that drive metastasis. Focusing on the mechanics of metastasis, we propose that the ability of tumour cells to survive the metastatic process is enhanced by mechanical stresses in the primary tumour microenvironment that select for well-adapted cells. In this Perspective, we suggest that biophysical adaptations favourable for metastasis are retained via mechanical memory, such that the extent of memory is influenced by both the magnitude and duration of the mechanical stress. Among the mechanical cues present in the primary tumour microenvironment, we focus on high matrix stiffness to illustrate how it alters tumour cell proliferation, survival, secretion of molecular factors, force generation, deformability, migration and invasion. We particularly centre our discussion on potential mechanisms of mechanical memory formation and retention via mechanotransduction and persistent epigenetic changes. Indeed, we propose that the biophysical adaptations that are induced by this process are retained throughout the metastatic process to improve tumour cell extravasation, survival and colonization in the distant organ. Deciphering mechanical memory mechanisms will be key to discovering a new class of anti-metastatic drugs.


Assuntos
Mecanotransdução Celular , Neoplasias , Humanos , Mecanotransdução Celular/fisiologia , Neoplasias/patologia , Microambiente Tumoral , Proliferação de Células , Epigênese Genética , Metástase Neoplásica , Movimento Celular/fisiologia
2.
Lab Chip ; 23(20): 4552-4564, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37771308

RESUMO

Several methods have been developed for generating 3D, in vitro, organ-on-chip models of human vasculature to study vascular function, transport, and tissue engineering. However, many of these existing models lack the hierarchical nature of the arterial-to-capillary-to-venous architecture that is key to capturing a more comprehensive view of the human microvasculature. Here, we present a perfusable, multi-compartmental model that recapitulates the three microvascular compartments to assess various physiological properties such as vessel permeability, vasoconstriction dynamics, and circulating cell arrest and extravasation. Viscous finger patterning and passive pumping create the larger arterial and venular lumens, while the smaller diameter capillary bed vessels are generated through self-assembly. These compartments anastomose and form a perfusable, hierarchical system that portrays the directionality of blood flow through the microvasculature. The addition of collagen channels reduces the apparent permeability of the central capillary region, likely by reducing leakage from the side channels, enabling more accurate measurements of vascular permeability-an important motivation for this study. Furthermore, the model permits modulation of fluid flow and shear stress conditions throughout the system by using hydrostatic pressure heads to apply pressure differentials across either the arteriole or the capillary. This is a pertinent system for modeling circulating tumor or T cell dissemination and extravasation. Circulating cells were found to arrest in areas conducive to physical trapping or areas with the least amount of shear stress, consistent with hemodynamic or mechanical theories of metastasis. Overall, this model captures more features of human microvascular beds and is capable of testing a broad variety of hypotheses.


Assuntos
Microvasos , Neoplasias , Humanos , Engenharia Tecidual/métodos , Colágeno , Dispositivos Lab-On-A-Chip
3.
Bioeng Transl Med ; 8(5): e10557, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37693050

RESUMO

Three-dimensional (3D) imaging techniques (e.g., confocal microscopy) are commonly used to visualize in vitro models, especially microvasculature on-a-chip. Conversely, 3D analysis is not the standard method to extract quantitative information from those models. We developed the µVES algorithm to analyze vascularized in vitro models leveraging 3D data. It computes morphological parameters (geometry, diameter, length, tortuosity, eccentricity) and intravascular flow velocity. µVES application to microfluidic vascularized in vitro models shows that they successfully replicate functional features of the microvasculature in vivo in terms of intravascular fluid flow velocity. However, wall shear stress is lower compared to in vivo references. The morphological analysis also highlights the model's physiological similarities (vessel length and tortuosity) and shortcomings (vessel radius and surface-over-volume ratio). The addition of the third dimension in our analysis produced significant differences in the metrics assessed compared to 2D estimations. It enabled the computation of new indices, such as vessel eccentricity. These µVES capabilities can find application in analyses of different in vitro vascular models, as well as in vivo and ex vivo microvasculature.

4.
ALTEX ; 40(2): 299­313, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36533850

RESUMO

The high variability in subcutaneous bioavailability of protein therapeutics is poorly understood, contributing to critical delays in patient access to new therapies. Preclinical animal and in vitro models fail to provide a physiologically relevant testbed to parse potential contributors to human bioavailability, therefore new strategies are necessary. Here, we present a microphysiological model of the human hypodermal vasculature at the injection site to study the interactions of administered protein therapeutics within the microenvironment that influence subcutaneous bioavailability. Our model combines human dermal endothelial cells, fibroblasts, and adipocytes, self-assembled into three-dimensional, perfusable microvessels that express relevant extracellular matrix. We demonstrate the utility of the model for measurement of biophysical parameters within the hypodermal microenvironment that putatively impact protein kinetics and distribution at the injection site. We propose that microphysiological models of the subcutaneous space have applications in preclinical development of protein therapeutics intended for subcutaneous administration with optimal bioavailability.


Assuntos
Células Endoteliais , Animais , Humanos , Preparações Farmacêuticas , Disponibilidade Biológica
5.
Biomaterials ; 288: 121728, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35995621

RESUMO

Epithelial ovarian cancer has the highest mortality rate of any gynecologic malignancy and most frequently metastasizes to the peritoneal cavity. Intraperitoneal metastases are highly associated with ascites, the pathologic accumulation of peritoneal fluid due to impaired drainage, increased peritoneal permeability, and tumor and stromal cytokine secretion. However, the relationship between ascites, vascular and mesothelial permeability, and ovarian cancer intraperitoneal metastases remains poorly understood. In this study, a vascularized in vitro model of the human peritoneal omentum and ovarian tumor microenvironment (TME) was employed to study stromal cell effects on tumor cell (TC) attachment and growth, as well as TC effects on vascular and mesothelial permeability in models of both early- and late-stage metastases. Control over the number of TCs seeded in the vascularized peritoneum revealed a critical cell density requirement for tumor growth, which was further enhanced by stromal adipocytes and endothelial cells found in the peritoneal omentum. This tumor growth resulted in both a physically-mediated decrease and cytokine-mediated increase in microvascular permeability, emphasizing the important and potentially opposing roles of tumor cells in ascites formation. This system provides a robust platform to elucidate TC-stromal cell interactions during intraperitoneal metastasis of ovarian cancer and presents the first in vitro vascularized model of the human peritoneum and ovarian cancer TME.


Assuntos
Neoplasias Ovarianas , Peritônio , Ascite/patologia , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Citocinas , Células Endoteliais/patologia , Feminino , Humanos , Dispositivos Lab-On-A-Chip , Microfluídica , Omento/patologia , Neoplasias Ovarianas/patologia , Peritônio/patologia , Microambiente Tumoral
6.
Proc Natl Acad Sci U S A ; 119(23): e2118697119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35648828

RESUMO

The blood­brain barrier represents a significant challenge for the treatment of high-grade gliomas, and our understanding of drug transport across this critical biointerface remains limited. To advance preclinical therapeutic development for gliomas, there is an urgent need for predictive in vitro models with realistic blood­brain-barrier vasculature. Here, we report a vascularized human glioblastoma multiforme (GBM) model in a microfluidic device that accurately recapitulates brain tumor vasculature with self-assembled endothelial cells, astrocytes, and pericytes to investigate the transport of targeted nanotherapeutics across the blood­brain barrier and into GBM cells. Using modular layer-by-layer assembly, we functionalized the surface of nanoparticles with GBM-targeting motifs to improve trafficking to tumors. We directly compared nanoparticle transport in our in vitro platform with transport across mouse brain capillaries using intravital imaging, validating the ability of the platform to model in vivo blood­brain-barrier transport. We investigated the therapeutic potential of functionalized nanoparticles by encapsulating cisplatin and showed improved efficacy of these GBM-targeted nanoparticles both in vitro and in an in vivo orthotopic xenograft model. Our vascularized GBM model represents a significant biomaterials advance, enabling in-depth investigation of brain tumor vasculature and accelerating the development of targeted nanotherapeutics.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Permeabilidade Capilar , Glioblastoma , Nanopartículas , Animais , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/metabolismo , Células Endoteliais/metabolismo , Glioblastoma/irrigação sanguínea , Glioblastoma/metabolismo , Humanos , Camundongos , Microfluídica , Nanopartículas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Nat Protoc ; 17(1): 95-128, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34997242

RESUMO

The blood-brain barrier (BBB) greatly restricts the entry of biological and engineered therapeutic molecules into the brain. Due to challenges in translating results from animal models to the clinic, relevant in vitro human BBB models are needed to assess pathophysiological molecular transport mechanisms and enable the design of targeted therapies for neurological disorders. This protocol describes an in vitro model of the human BBB self-assembled within microfluidic devices from stem-cell-derived or primary brain endothelial cells, and primary brain pericytes and astrocytes. This protocol requires 1.5 d for device fabrication, 7 d for device culture and up to 5 d for downstream imaging, protein and gene expression analyses. Methodologies to measure the permeability of any molecule in the BBB model, which take 30 min per device, are also included. Compared with standard 2D assays, the BBB model features relevant cellular organization and morphological characteristics, as well as values of molecular permeability within the range expected in vivo. These properties, coupled with a functional brain endothelial expression profile and the capability to easily test several repeats with low reagent consumption, make this BBB model highly suitable for widespread use in academic and industrial laboratories.


Assuntos
Barreira Hematoencefálica , Permeabilidade Capilar/fisiologia , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Modelos Cardiovasculares , Astrócitos/citologia , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/fisiologia , Encéfalo/citologia , Células Cultivadas , Células Endoteliais/citologia , Humanos , Pericitos/citologia
8.
Biomaterials ; 276: 121032, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34303155

RESUMO

Human umbilical vein endothelial cells (HUVECs) and stromal cells, such as human lung fibroblasts (FBs), have been widely used to generate functional microvascular networks (µVNs) in vitro. However, primary cells derived from different donors have batch-to-batch variations and limited lifespans when cultured in vitro, which hampers the reproducibility of µVN formation. Here, we immortalize HUVECs and FBs by exogenously expressing human telomerase reverse transcriptase (hTERT) to obtain stable endothelial cell and FB sources for µVN formation in vitro. Interestingly, we find that immortalized HUVECs can only form functional µVNs with immortalized FBs from earlier passages but not from later passages. Mechanistically, we show that Thy1 expression decreases in FBs from later passages. Compared to Thy1 negative FBs, Thy1 positive FBs express higher IGFBP2, IGFBP7, and SPARC, which are important for angiogenesis and lumen formation during vasculogenesis in 3D. Moreover, Thy1 negative FBs physically block microvessel openings, reducing the perfusability of µVNs. Finally, by culturing immortalized FBs on gelatin-coated surfaces in serum-free medium, we are able to maintain the majority of Thy1 positive immortalized FBs to support perfusable µVN formation. Overall, we establish stable cell sources for µVN formation and characterize the functions of Thy1 positive and negative FBs in vasculogenesis in vitro.


Assuntos
Microfluídica , Telomerase , Diferenciação Celular , Células Cultivadas , Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Reprodutibilidade dos Testes
9.
Commun Biol ; 4(1): 255, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637851

RESUMO

The glycocalyx on tumor cells has been recently identified as an important driver for cancer progression, possibly providing critical opportunities for treatment. Metastasis, in particular, is often the limiting step in the survival to cancer, yet our understanding of how tumor cells escape the vascular system to initiate metastatic sites remains limited. Using an in vitro model of the human microvasculature, we assess here the importance of the tumor and vascular glycocalyces during tumor cell extravasation. Through selective manipulation of individual components of the glycocalyx, we reveal a mechanism whereby tumor cells prepare an adhesive vascular niche by depositing components of the glycocalyx along the endothelium. Accumulated hyaluronic acid shed by tumor cells subsequently mediates adhesion to the endothelium via the glycoprotein CD44. Trans-endothelial migration and invasion into the stroma occurs through binding of the isoform CD44v to components of the sub-endothelial extra-cellular matrix. Targeting of the hyaluronic acid-CD44 glycocalyx complex results in significant reduction in the extravasation of tumor cells. These studies provide evidence of tumor cells repurposing the glycocalyx to promote adhesive interactions leading to cancer progression. Such glycocalyx-mediated mechanisms may be therapeutically targeted to hinder metastasis and improve patient survival.


Assuntos
Neoplasias da Mama/metabolismo , Adesão Celular , Glicocálix/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Microvasos/metabolismo , Migração Transendotelial e Transepitelial , Neoplasias da Mama/patologia , Comunicação Celular , Linhagem Celular Tumoral , Técnicas de Cocultura , Feminino , Glicocálix/patologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Microvasos/patologia , Invasividade Neoplásica , Metástase Neoplásica , Transdução de Sinais
10.
J Biomech ; 119: 110330, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33631662

RESUMO

Advances in microphysiological systems have prompted the need for long-term cell culture under physiological flow conditions. Conventional laboratory pumps typically lack the ability to deliver cell culture media at the low flow rates required to meet the physiological ranges of fluid flow, and are often pulsatile or require flow reversal. Here, a microfluidic-based pump is presented, which allows for the controlled delivery of media for vascular microphysiological applications. The performance of the pump was characterized in a range of microfluidic systems, including straight channels of varying dimensions and self-assembled microvascular networks. A theoretical framework was developed based on lumped element analysis to predict the performance of the pump for different fluidic configurations and a finite element model of the included check-valves. The use of the pump for microvascular physiological studies demonstrated the utility of this system to recapitulate vascular fluid transport phenomena in microphysiological systems, which may find applications in disease models and drug screening.


Assuntos
Técnicas Analíticas Microfluídicas , Técnicas de Cultura de Células , Avaliação Pré-Clínica de Medicamentos , Dispositivos Lab-On-A-Chip , Microfluídica
11.
Biomaterials ; 265: 120470, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33190735

RESUMO

Throughout the process of metastatic dissemination, tumor cells are continuously subjected to mechanical forces resulting from complex fluid flows due to changes in pressures in their local microenvironments. While these forces have been associated with invasive phenotypes in 3D matrices, their role in key steps of the metastatic cascade, namely extravasation and subsequent interstitial migration, remains poorly understood. In this study, an in vitro model of the human microvasculature was employed to subject tumor cells to physiological luminal, trans-endothelial, and interstitial flows to evaluate their effects on those key steps of metastasis. Luminal flow promoted the extravasation potential of tumor cells, possibly as a result of their increased intravascular migration speed. Trans-endothelial flow increased the speed with which tumor cells transmigrated across the endothelium as well as their migration speed in the matrix following extravasation. In addition, tumor cells possessed a greater propensity to migrate in close proximity to the endothelium when subjected to physiological flows, which may promote the successful formation of metastatic foci. These results show important roles of fluid flow during extravasation and invasion, which could determine the local metastatic potential of tumor cells.


Assuntos
Fenômenos Mecânicos , Microvasos , Contagem de Células , Linhagem Celular Tumoral , Endotélio , Humanos
12.
J Mater Sci Mater Med ; 31(5): 46, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32367247

RESUMO

Diffusion of nutrients to cells cultured within three-dimensional scaffolds is fundamental for cell survival during development of the tissue construct, when no vasculature is present to aid transport. Significant efforts have been made to characterize the effect of structure on solute diffusivity in nanoporous hydrogels, yet a similar thorough characterization has not been attempted for microporous scaffolds. Here, we make use of freeze-dried collagen scaffolds, possessing pore sizes in the range 150-250 µm and isotropic or aligned morphology, to study the diffusivity of fluorescent dextran molecules. Fluorescence recovery after photobleaching is used to measure the self diffusivity of the solutes within single pores, while Fickian diffusion over scales larger than the pore size is studied by assessing the solute concentration profile within the materials over time. We show that, not only do the morphological parameters of the scaffolds significantly affect the diffusivity of the solutes, but also that the assessment of such diffusivity depends on the length scale of diffusion of the molecules under investigation, with the resulting diffusion coefficients being differently affected by the scaffold structure. The results provided can guide the design of scaffolds with tailored diffusivity and nutrient concentration profiles.


Assuntos
Colágeno/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis , Liofilização
13.
Adv Funct Mater ; 30(48)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33692661

RESUMO

Drug discovery and efficacy in cancer treatments are limited by the inability of pre-clinical models to predict successful outcomes in humans. Limitations remain partly due to their lack of a physiologic tumor microenvironment (TME), which plays a considerable role in drug delivery and tumor response to therapy. Chemotherapeutics and immunotherapies rely on transport through the vasculature, via the smallest capillaries and stroma to the tumor, where passive and active transport processes are at play. Here, a 3D vascularized tumor on-chip is used to examine drug delivery in a relevant TME within a large bed of perfusable vasculature. This system demonstrates highly localized pathophysiological effects of two tumor spheroids (Skov3 and A549) which cause significant changes in vessel density and barrier function. Paclitaxel (Taxol) uptake is examined through diffusivity measurements, functional efflux assays and accumulation of the fluorescent-conjugated drug within the TME. Due to vascular and stromal contributions, differences in the response of vascularized tumors to Taxol (shrinkage and CD44 expression) are apparent compared with simpler models. This model specifically allows for examination of spatially resolved tumor-associated endothelial dysfunction, likely improving the representation of in vivo drug distribution, and has potential for development into a more predictable model of drug delivery.

14.
Macromolecules ; 52(18): 6889-6897, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31579160

RESUMO

The number of biomedical applications of hydrogels is increasing rapidly on account of their unique physical, structural, and mechanical properties. The utility of hydrogels as drug delivery systems or tissue engineering scaffolds critically depends on the control of diffusion of solutes through the hydrogel matrix. Predicting or even modeling this diffusion is challenging due to the complex structure of hydrogels. Currently, the diffusivity of solutes in hydrogels is typically modeled by one of three main theories proceeding from distinct diffusion mechanisms: (i) hydrodynamic, (ii) free volume, and (iii) obstruction theory. Yet, a comprehensive predictive model is lacking. Thus, time and capital-intensive trial-and-error procedures are used to test the viability of hydrogel applications. In this work, we have developed a model for the diffusivity of solutes in hydrogels combining the three main theoretical frameworks, which we call the multiscale diffusion model (MSDM). We verified the MSDM by analyzing the diffusivity of dextran of different sizes in a series of poly(ethylene glycol) (PEG) hydrogels with distinct mesh sizes. We measured the subnanoscopic free volume by positron annihilation lifetime spectroscopy (PALS) to characterize the physical hierarchy of these materials. In addition, we performed a meta-analysis of literature data from previous studies on the diffusion of solutes in hydrogels. The model presented outperforms traditional models in predicting solute diffusivity in hydrogels and provides a practical approach to predicting the transport properties of solutes such as drugs through hydrogels used in many biomedical applications.

15.
Small ; 15(46): e1902393, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31497931

RESUMO

In vitro prediction of physiologically relevant transport of therapeutic molecules across the microcirculation represents an intriguing opportunity to predict efficacy in human populations. On-chip microvascular networks (MVNs) show physiologically relevant values of molecular permeability, yet like most systems, they lack an important contribution to transport: the ever-present fluid convection through the endothelium. Quantification of transport through the MVNs by current methods also requires confocal imaging and advanced analytical techniques, which can be a bottleneck in industry and academic laboratories. Here, it is shown that by recapitulating physiological transmural flow across the MVNs, the concentration of small and large molecule therapeutics can be directly sampled in the interstitial fluid and analyzed using standard analytical techniques. The magnitudes of transport measured in MVNs reveal trends with molecular size and type (protein versus nonprotein) that are expected in vivo, supporting the use of the MVNs platform as an in vitro tool to predict distribution of therapeutics in vivo.


Assuntos
Líquido Extracelular/fisiologia , Microvasos/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Proteínas Sanguíneas/metabolismo , Fluoresceína-5-Isotiocianato/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Dispositivos Lab-On-A-Chip , Perfusão , Permeabilidade , Pressão , Transporte Proteico
16.
Biomaterials ; 212: 115-125, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31112823

RESUMO

Recent therapeutic success of large-molecule biologics has led to intense interest in assays to measure with precision their transport across the vascular endothelium and into the target tissue. Most current in vitro endothelial models show unrealistically large permeability coefficients due to a non-physiological paracellular transport. Thus, more advanced systems are required to better recapitulate and discern the important contribution of transcellular transport (transcytosis), particularly of pharmaceutically-relevant proteins. Here, a robust platform technology for the measurement of transport through a human endothelium is presented, which utilizes in vitro microvascular networks (MVNs). The self-assembled MVNs recapitulate the morphology and junctional complexity of in vivo capillaries, and express key endothelial vesicular transport proteins. This results in measured permeabilities to large molecules comparable to those observed in vivo, which are orders of magnitude lower than those measured in transwells. The permeability of albumin and immunoglobulin G (IgG), biopharmaceutically-relevant proteins, is shown to occur primarily via transcytosis, with passage of IgG regulated by the receptor FcRn. The physiological relevance of the MVNs make it a valuable tool to assess the distribution of biopharmaceuticals into tissues, and may be used to prioritize candidate molecules from this increasingly important class of therapeutics.


Assuntos
Permeabilidade Capilar/fisiologia , Dispositivos Lab-On-A-Chip , Microcirculação/fisiologia , Proteínas/metabolismo , Albuminas/metabolismo , Endotélio Vascular/metabolismo , Glicocálix/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Imunoglobulina G/metabolismo , Microvasos/fisiologia , Perfusão , Receptores Fc/metabolismo , Transcitose
17.
Macromol Biosci ; 18(11): e1800247, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30187996

RESUMO

Cartilage wounds result in chronic pain and degradation of the quality of life for millions of people. A synthetic cellular scaffold able to heal the damage by substituting the natural tissue is of great potential value. Here, it is shown for the first time that the unique interplay between the molecular components of cartilage can be reproduced in composite materials made of a polyelectrolyte hydrogel embedding a collagen scaffold. These composites possess a mechanical response determined by osmotic and electrostatic effects, comparable to articular cartilage in terms of elastic modulus, time-dependent response, and permeability to interstitial fluid flow. Made entirely from biocompatible materials, the cartilage-like composite materials developed permit 3D culture of chondrocyte-like cells through their microporosity. The biomimetic materials presented here constitute an entirely new class of osmotically stiffened composites, which may find use outside of biomedical applications.


Assuntos
Materiais Biocompatíveis/química , Materiais Biomiméticos/química , Cartilagem/química , Técnicas de Cultura de Células , Hidrogéis/química , Pressão Osmótica , Alicerces Teciduais/química , Linhagem Celular Tumoral , Colágeno/química , Módulo de Elasticidade , Humanos , Eletricidade Estática
18.
ACS Cent Sci ; 2(12): 885-895, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-28058277

RESUMO

Tissue architecture is intimately linked with its functions, and loss of tissue organization is often associated with pathologies. The intricate depth-dependent extracellular matrix (ECM) arrangement in articular cartilage is critical to its biomechanical functions. In this study, we developed a Raman spectroscopic imaging approach to gain new insight into the depth-dependent arrangement of native and tissue-engineered articular cartilage using bovine tissues and cells. Our results revealed previously unreported tissue complexity into at least six zones above the tidemark based on a principal component analysis and k-means clustering analysis of the distribution and orientation of the main ECM components. Correlation of nanoindentation and Raman spectroscopic data suggested that the biomechanics across the tissue depth are influenced by ECM microstructure rather than composition. Further, Raman spectroscopy together with multivariate analysis revealed changes in the collagen, glycosaminoglycan, and water distributions in tissue-engineered constructs over time. These changes were assessed using simple metrics that promise to instruct efforts toward the regeneration of a broad range of tissues with native zonal complexity and functional performance.

19.
J Mech Behav Biomed Mater ; 42: 19-25, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25460922

RESUMO

Tissue engineering has grown in the past two decades as a promising solution to unresolved clinical problems such as osteoarthritis. The mechanical response of tissue engineering scaffolds is one of the factors determining their use in applications such as cartilage and bone repair. The relationship between the structural and intrinsic mechanical properties of the scaffolds was the object of this study, with the ultimate aim of understanding the stiffness of the substrate that adhered cells experience, and its link to the bulk mechanical properties. Freeze-dried type I collagen porous scaffolds made with varying slurry concentrations and pore sizes were tested in a viscoelastic framework by macroindentation. Membranes made up of stacks of pore walls were indented using colloidal probe atomic force microscopy. It was found that the bulk scaffold mechanical response varied with collagen concentration in the slurry consistent with previous studies on these materials. Hydration of the scaffolds resulted in a more compliant response, yet lesser viscoelastic relaxation. Indentation of the membranes suggested that the material making up the pore walls remains unchanged between conditions, so that the stiffness of the scaffolds at the scale of seeded cells is unchanged; rather, it is suggested that thicker pore walls or more of these result in the increased moduli for the greater slurry concentration conditions.


Assuntos
Colágeno Tipo I , Teste de Materiais , Fenômenos Mecânicos , Engenharia Tecidual , Alicerces Teciduais , Animais , Fenômenos Biomecânicos , Bovinos , Elasticidade , Liofilização , Membranas Artificiais , Viscosidade
20.
Trends Biotechnol ; 32(11): 564-570, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25294495

RESUMO

Hydrogels closely resemble the extracellular matrix (ECM) and can support cell proliferation while new tissue is formed, making them materials of choice as tissue engineering scaffolds. However, their sometimes-poor mechanical properties can hinder their application. The addition of meshes of nanofibers embedded in their matrix forms a composite that draws from the advantages of both components. Given that these materials are still in the early stages of development, there is a lack of uniformity across methods for characterizing their mechanical properties. Here, we propose a simple metric to enable comparisons between materials. The fibrous constituent improves the mechanical properties of the hydrogel, while the biocompatibility and functionality of the gels are maintained or even improved.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato , Nanofibras , Engenharia Tecidual/métodos , Alicerces Teciduais , Fenômenos Biomecânicos , Fenômenos Químicos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA