RESUMO
Kluyveromyces marxianus is a thermotolerant, ethanol-producing yeast that requires oxygen for efficient ethanol fermentation. Under anaerobic conditions, glucose consumption and ethanol production are retarded, suggesting that oxygen affects the metabolic state of K. marxianus. Mitochondria require oxygen to function, and their forms and number vary according to environmental conditions. In this study, the effect of anoxia on mitochondrial behavior in K. marxianus was examined. Under aerobic growth conditions, mitochondria-targeted GFP exhibited a tubular and dotted localization, representing a typical mitochondrial morphology, but under anaerobic conditions, GFP localized in vacuoles, suggesting that mitophagy occurs under anaerobic conditions. To confirm mitophagy induction, the ATG32, ATG8, ATG11 and ATG19 genes were disrupted. Vacuolar localization of mitochondria-targeted GFP under anaerobic conditions was interrupted in the Δatg32 and Δatg8 strains but not the Δatg11 and Δatg19 strains. Electron microscopy revealed mitochondria-like membrane components in the vacuoles of wild-type cells grown under anaerobic conditions. Quantitative analyses using mitochondria-targeted Pho8 demonstrated that mitophagy was induced in K. marxianus by anoxia but not nitrogen starvation. To the best of our knowledge, this is the first demonstration of anoxia-induced mitophagy in yeasts.
Assuntos
Kluyveromyces/metabolismo , Mitofagia , Oxigênio/metabolismo , Anaerobiose , Fermentação , Mitocôndrias/metabolismoRESUMO
We previously reported that Ag85B-expressing human parainfluenza type 2 virus (Ag85B-rHPIV2) was effective as a nasal vaccine against tuberculosis in mice; however, the mechanism by which it induces an immune response remains to be investigated. In the present study, we found that organogenesis of inducible bronchus-associated lymphoid tissue (iBALT) played a role in the induction of antigen-specific T cells and IgA antibody responses in the lung of mice intra-nasally administered Ag85B-rHPIV2. We found that expression of Ag85B was dispensable for the development of iBALT, suggesting that HPIV2 acted as an iBALT-inducing vector. When iBALT organogenesis was disrupted in Ag85B-rHPIV2-immunized mice, either by neutralization of the lymphotoxin pathway or depletion of CD11b+ cells, Ag85B-specific immune responses (i.e. IFN γ-producing T cells and IgA antibody) were diminished in the lung. Furthermore, we found that immunization with Ag85B-rHPIV2 induced neutrophil and eosinophil infiltration temporally after the immunization in the lung. Thus, our results show that iBALT organogenesis contributes to the induction of antigen-specific immune responses by Ag85B-rHPIV2 and that Ag85B-rHPIV2 provokes its immune responses without inducing long-lasting inflammation.
Assuntos
Aciltransferases/imunologia , Antígenos de Bactérias/imunologia , Tecido Linfoide/imunologia , Mycobacterium tuberculosis/imunologia , Organogênese , Vírus da Parainfluenza 2 Humana/imunologia , Vacinas contra a Tuberculose/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND: TNF (Tumor Necrosis Factor-α) induces HUVEC (Human Umbilical Vein Endothelial Cells) to proliferate and form new blood vessels. This TNF-induced angiogenesis plays a key role in cancer and rheumatic disease. However, the molecular system that underlies TNF-induced angiogenesis is largely unknown. METHODS: We analyzed the gene expression changes stimulated by TNF in HUVEC over a time course using microarrays to reveal the molecular system underlying TNF-induced angiogenesis. Traditional k-means clustering analysis was performed to identify informative temporal gene expression patterns buried in the time course data. Functional enrichment analysis using DAVID was then performed for each cluster. The genes that belonged to informative clusters were then used as the input for gene network analysis using a Bayesian network and nonparametric regression method. Based on this TNF-induced gene network, we searched for sub-networks related to angiogenesis by integrating existing biological knowledge. RESULTS: k-means clustering of the TNF stimulated time course microarray gene expression data, followed by functional enrichment analysis identified three biologically informative clusters related to apoptosis, cellular proliferation and angiogenesis. These three clusters included 648 genes in total, which were used to estimate dynamic Bayesian networks. Based on the estimated TNF-induced gene networks, we hypothesized that a sub-network including IL6 and IL8 inhibits apoptosis and promotes TNF-induced angiogenesis. More particularly, IL6 promotes TNF-induced angiogenesis by inducing NF-κB and IL8, which are strong cell growth factors. CONCLUSIONS: Computational gene network analysis revealed a novel molecular system that may play an important role in the TNF-induced angiogenesis seen in cancer and rheumatic disease. This analysis suggests that Bayesian network analysis linked to functional annotation may be a powerful tool to provide insight into disease.
Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Fator de Necrose Tumoral alfa/farmacologia , Teorema de Bayes , Biomarcadores Tumorais/genética , Análise por Conglomerados , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , HumanosRESUMO
A conundrum of innate antiviral immunity is how nucleic acid-sensing Toll-like receptors (TLRs) and RIG-I/MDA5 receptors cooperate during virus infection. The conventional wisdom has been that the activation of these receptor pathways evokes type I IFN (IFN) responses. Here, we provide evidence for a critical role of a Toll-like receptor 3 (TLR3)-dependent type II IFN signaling pathway in antiviral innate immune response against Coxsackievirus group B serotype 3 (CVB3), a member of the positive-stranded RNA virus family picornaviridae and most prevalent virus associated with chronic dilated cardiomyopathy. TLR3-deficient mice show a vulnerability to CVB3, accompanied by acute myocarditis, whereas transgenic expression of TLR3 endows even type I IFN signal-deficient mice resistance to CVB3 and other types of viruses, provided that type II IFN signaling remains intact. Taken together, our results indicate a critical cooperation of the RIG-I/MDA5-type I IFN and the TLR3-type II IFN signaling axes for efficient innate antiviral immune responses.