RESUMO
Cholesterol is a major and essential component of the mammalian cell plasma membrane (PM), and the loss of cholesterol homeostasis leads to various pathologies. Cellular cholesterol uptake and synthesis are regulated by a cholesterol sensor in the endoplasmic reticulum (ER). However, it remains unclear how changes in the cholesterol level of the PM are recognized. Here, we show that the sensing of cholesterol in the PM depends on ABCA1 and the cholesterol transfer protein Aster-A, which cooperatively maintain the asymmetric transbilayer cholesterol distribution in the PM. We demonstrate that ABCA1 translocates (flops) cholesterol from the inner leaflet of the PM to the outer leaflet of the PM to maintain a low inner leaflet cholesterol level. We also found that when inner cholesterol levels were increased, Aster-A was recruited to the PM-ER contact site to transfer cholesterol to the ER. These results suggest that ABCA1 could promote an asymmetric cholesterol distribution to suppress Aster-A recruitment to the PM-ER contact site to maintain intracellular cholesterol homeostasis.
Assuntos
Transportador 1 de Cassete de Ligação de ATP , Colesterol , Mamíferos , Proteínas Associadas aos Microtúbulos , Animais , Transporte Biológico , Membrana Celular/metabolismo , Colesterol/metabolismo , Mamíferos/metabolismoRESUMO
ATP-binding cassette (ABC) proteins play diverse roles in all living organisms, making them an attractive model for evolution. Early evolution of ancestral unicellular organisms entailed the acquisition of at least three types of ABC proteins: type 1 ABC proteins to import nutrients, and type 2 and 3 ABC proteins to generate the outer cell membrane by flopping and loading lipids onto acceptors, respectively. To export various toxic lipophilic compounds, cells evolutionarily acquired a fourth type of ABC protein. This suggests that ABC proteins may have played an important role in evolution, especially when life became terrestrial, protecting plants and animals from water loss and pathogen infection. ABC proteins are also assumed to have accelerated the evolution of vertebrates by allowing cholesterol to function for intramembrane signaling. In this review, we discuss the roles of ABC proteins in the evolution of bacteria, plants, and animals.
Assuntos
Transportadores de Cassetes de Ligação de ATP , Evolução Biológica , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Bactérias/metabolismo , Humanos , Plantas/metabolismo , Vertebrados/metabolismoRESUMO
P-glycoprotein (P-gp; also known as MDR1 or ABCB1) is an ATP-driven multidrug transporter that extrudes various hydrophobic toxic compounds to the extracellular space. P-gp consists of two transmembrane domains (TMDs) that form the substrate translocation pathway and two nucleotide-binding domains (NBDs) that bind and hydrolyze ATP. At least two P-gp states are required for transport. In the inward-facing (pre-drug transport) conformation, the two NBDs are separated, and the two TMDs are open to the intracellular side; in the outward-facing (post-drug transport) conformation, the NBDs are dimerized, and the TMDs are slightly open to the extracellular side. ATP binding and hydrolysis cause conformational changes between the inward-facing and the outward-facing conformations, and these changes help translocate substrates across the membrane. However, how ATP hydrolysis is coupled to these conformational changes remains unclear. In this study, we used a new FRET sensor that detects conformational changes in P-gp to investigate the role of ATP binding and hydrolysis during the conformational changes of human P-gp in living HEK293 cells. We show that ATP binding causes the conformational change to the outward-facing state and that ATP hydrolysis and subsequent release of γ-phosphate from both NBDs allow the outward-facing state to return to the original inward-facing state. The findings of our study underscore the utility of using FRET analysis in living cells to elucidate the function of membrane proteins such as multidrug transporters.
Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Conformação Proteica , Multimerização Proteica , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios ProteicosRESUMO
ATP-Binding Cassette A1 (ABCA1) is a key lipid transporter for cholesterol homeostasis. We recently reported that ABCA1 not only exports excess cholesterol in an apoA-I dependent manner, but that it also flops cholesterol from the inner to the outer leaflet of the plasma membrane. However, the relationship between these two activities of ABCA1 is still unclear. In this study, we analyzed the subcellular localization of ABCA1 by using a newly generated monoclonal antibody against its extracellular domain and the functions of eleven chimera proteins, in which the C-terminal domain of ABCA1 was replaced with those of the other ABCA subfamily members. We identified two motifs important for the functions of ABCA1. Three periodically repeated leucine residues were necessary for the cholesterol floppase activity but not the cholesterol efflux activity, while a VFVNFA motif was essential for both activities of ABCA1. These results suggest that the C-terminal of ABCA1 separately regulates the cholesterol floppase activity and the cholesterol efflux activity.
Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Colesterol/metabolismo , Transportador 1 de Cassete de Ligação de ATP/química , Sequência de Aminoácidos , Transporte Biológico , Sequência Conservada , Células HEK293 , Humanos , Homologia de Sequência de AminoácidosRESUMO
ATP-binding cassette A1 (ABCA1) plays a key role in generating high-density lipoprotein (HDL) and preventing atherosclerosis. ABCA1 exports cholesterol and phospholipid to apolipoprotein A-I (apoA-I) in serum to generate HDL. We found that streptolysin O (SLO), a cholesterol-dependent pore-forming toxin, barely formed pores in ABCA1-expressing cells, even in the absence of apoA-I. Neither cholesterol content in cell membranes nor the amount of SLO bound to cells was affected by ABCA1. On the other hand, binding of the D4 domain of perfringolysin O (PFO) to ABCA1-expressing cells increased, suggesting that the amount of cholesterol in the outer leaflet of the plasma membrane (PM) increased and that the cholesterol dependences of these two toxins differ. Addition of cholesterol to the PM by the MßCD-cholesterol complex dramatically restored SLO pore formation in ABCA1-expressing cells. Therefore, exogenous expression of ABCA1 causes reduction in the cholesterol level in the inner leaflet, thereby suppressing SLO pore formation.
Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Apolipoproteína A-I/metabolismo , Toxinas Bacterianas/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Proteínas Hemolisinas/metabolismo , Lipoproteínas HDL/metabolismo , Estreptolisinas/metabolismo , Proteínas de Bactérias/metabolismo , Células HEK293 , HumanosRESUMO
The quality and quantity of high-density lipoprotein (HDL) in blood plasma are important for preventing coronary artery disease. ATP-binding cassette protein A1 (ABCA1) and apolipoprotein A-I (apoA-I) play essential roles in nascent HDL formation, but controversy persists regarding the mechanism by which nascent HDL is generated. In the "direct loading model", apoA-I acquires lipids directly from ABCA1 while it is bound to the transporter. By contrast, in the "indirect model", apoA-I acquires lipids from the specific membrane domains created by ABCA1. In this study, we found that trypsin treatment causes rapid release of phosphatidylcholine (PC) and cholesterol from BHK/ABCA1 cells, and that the time course of lipid release coincides with those of trypsin digestion of extracellular domains (ECDs) of surface ABCA1 and of release of ECD fragments into the medium. This trypsin-dependent lipid release was dependent on ABCA1 ATPase activity, and did not occur in cells that express ABCG1, which exports lipids like ABCA1 but does not have large ECDs. These results suggest that the trypsin-sensitive sites on the cell surface are the large ECDs of ABCA1, and that lipids transported by ABCA1 are temporarily sequestered within the ECDs during nascent HDL formation.