Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Viruses ; 15(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38005860

RESUMO

(1) Background: Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the evolutionary traits of its variants have been revealed. However, the temporal order of the majority of mutations harbored by variants after the closest ancestors (or precursors), as "missing links", remains unclear. In this study, we aimed to unveil such missing links based on analyses of S protein homology by focusing on specimens with incomplete sets of S protein mutations in a variant. (2) Methods: Prevariant and postvariant mutations were defined as those before and after the variant's development, respectively. A total of 6,758,926 and 14,519,521 genomes were obtained from the National Center for Biotechnology Information and the GISAID initiative, respectively, and S protein mutations were detected based on BLASTN analyses. (3) Results: The temporal order of prevariant mutations harbored by 12 variants was deduced. In particular, the D950N mutation in the Mu variant shows V-shaped mutation transitions, in which multiple routes of evolution were combined and resulted in the formation of a V-shaped transition, indicating recombination. (4) Conclusions: Many genome data for SARS-CoV-2 unveiled the candidate precursors of Mu variant based on a data-driven approach to its prevariant mutations in each nation.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Mutação , Fenótipo , Glicoproteína da Espícula de Coronavírus/genética
2.
Plant Cell Physiol ; 64(10): 1231-1242, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37647615

RESUMO

ACTIN DEPOLYMERIZING FACTOR (ADF) is a conserved protein that regulates the organization and dynamics of actin microfilaments. Eleven ADFs in the Arabidopsis thaliana genome are grouped into four subclasses, and subclass I ADFs, ADF1-4, are all expressed throughout the plant. Previously, we showed that subclass I ADFs function in the regulation of the response against powdery mildew fungus as well as in the regulation of cell size and endoreplication. Here, we report a new role of subclass I ADFs in the regulation of nuclear organization and gene expression. Through microscopic observation of epidermal cells in mature leaves, we found that the size of chromocenters in both adf4 and transgenic lines where expression of subclass I ADFs is downregulated (ADF1-4Ri) was reduced compared with that of wild-type Col-0. Arabidopsis thaliana possesses eight ACTIN (ACT) genes, among which ACT2, -7 and -8 are expressed in vegetative organs. The chromocenter size in act7, but not in the act2/8 double mutant, was enlarged compared with that in Col-0. Microarray analysis revealed that 1,818 genes were differentially expressed in adf4 and ADF1-4Ri. In particular, expression of 22 nucleotide-binding leucine-rich repeat genes, which are involved in effector-triggered plant immunity, was reduced in adf4 and ADF1-4Ri. qRT-PCR confirmed the altered expressions shown with microarray analysis. Overall, these results suggest that ADF regulates various aspects of plant physiology through its role in regulation of nuclear organization and gene expression. The mechanism how ADF and ACT regulate nuclear organization and gene expression is discussed.

3.
Plant J ; 115(4): 1071-1083, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37177878

RESUMO

The depletion of cellular zinc (Zn) adversely affects plant growth. Plants have adaptation mechanisms for Zn-deficient conditions, inhibiting growth through the action of transcription factors and metal transporters. We previously identified three defensin-like (DEFL) proteins (DEFL203, DEFL206 and DEFL208) that were induced in Arabidopsis thaliana roots under Zn-depleted conditions. DEFLs are small cysteine-rich peptides involved in defense responses, development and excess metal stress in plants. However, the functions of DEFLs in the Zn-deficiency response are largely unknown. Here, phylogenetic tree analysis revealed that seven DEFLs (DEFL202-DEFL208) were categorized into one subgroup. Among the seven DEFLs, the transcripts of five (not DEFL204 and DEFL205) were upregulated by Zn deficiency, consistent with the presence of cis-elements for basic-region leucine-zipper 19 (bZIP19) or bZIP23 in their promoter regions. Microscopic observation of GFP-tagged DEFL203 showed that DEFL203-sGFP was localized to the apoplast and plasma membrane. Whereas a single mutation of the DEFL202 or DEFL203 genes only slightly affected root growth, defl202 defl203 double mutants showed enhanced root growth under all growth conditions. We also showed that the size of the root meristem was increased in the double mutants compared with the wild type. Our results suggest that DEFL202 and DEFL203 are redundantly involved in the inhibition of root growth under Zn-deficient conditions through a reduction in root meristem length and cell number.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Filogenia , Zinco/metabolismo , Metais/metabolismo , Plantas/metabolismo , Defensinas/genética , Defensinas/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
4.
BMC Genom Data ; 23(1): 34, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508965

RESUMO

BACKGROUND: Over a million genomes and mutational analyses of SARS-CoV-2 are available in public databases, which reveal the phylogenetic tree of the virus. Although these data have enabled scientists to closely track the evolution and transmission dynamics of the virus at global and local scales, the Mu variant, recently identified in infections in South America, shows an unusual combination of mutations, and it is difficult to visualize these atypical characteristics in public databases based on a phylogenetic tree. RESULTS: The Vcorn SARS-CoV-2 database was constructed to provide information on COVID-19 infections and mutations in the S protein of the virus based on correlation network analysis. A correlation network was constructed using the recall index of one mutation to another mutation. The network includes several network modules in which nodes represent mutations and are tightly connected to each other. Individual network modules contain mutations of single variants, such as the alpha and delta variants. In the network constructed to emphasize mutations of the Mu variant using the database, the mutations were found to be located in multiple network modules, indicating that the mutations of the variant may have originated from multiple variants or be located at a basal position with a high frequency of mutation. CONCLUSIONS: Vcorn SARS-CoV-2 provides information on COVID-19 and S protein mutations of SARS-CoV-2 via correlation network analysis. The network based on the analysis illustrates the unusual S protein mutations of the Mu variant. The database is freely available at http://www.plant.osakafu-u.ac.jp/~kagiana/vcorn/sarscov2/ .


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/genética , Humanos , Mutação , Filogenia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus
5.
J Fungi (Basel) ; 7(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34829248

RESUMO

(1) Background: Fungi contain several millions of species, and the diversification of fungal genes has been achieved by speciation, gene duplication, and horizontal gene transfer. Although several databases provide information on orthologous and paralogous events, these databases show no information on biases between gene mutation and speciation. Here, we designed the Gcorn fungi database to better understand such biases. (2) Methods: Amino acid sequences of fungal genes in 249 species, which contain 2,345,743 sequences, were used for this database. Homologous genes were grouped at various thresholds of the homology index, which was based on the percentages of gene mutations. By grouping genes that showed highly similar homology indices to each other, we showed functional and evolutionary traits in the phylogenetic tree depicted for the gene of interest. (3) Results: Gcorn fungi provides well-summarized information on the evolution of a gene lineage and on the biases between gene evolution and speciation, which are quantitatively identified by the Robinson-Foulds metric. The database helps users visualize these traits using various depictions. (4) Conclusions: Gcorn fungi is an open access database that provides a variety of information with which to understand gene function and evolution.

6.
Plants (Basel) ; 10(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34685871

RESUMO

Hybrid lethality, a postzygotic mechanism of reproductive isolation, is a phenomenon that causes the death of F1 hybrid seedlings. Hybrid lethality is generally caused by the epistatic interaction of two or more loci. In the genus Nicotiana, N. debneyi has the dominant allele Hla1-1 at the HLA1 locus that causes hybrid lethality in F1 hybrid seedlings by interaction with N. tabacum allele(s). Here, we mapped the HLA1 locus using the F2 population segregating for the Hla1-1 allele derived from the interspecific cross between N. debneyi and N. fragrans. To map HLA1, several DNA markers including random amplified polymorphic DNA, amplified fragment length polymorphism, and simple sequence repeat markers, were used. Additionally, DNA markers were developed based on disease resistance gene homologs identified from the genome sequence of N. benthamiana. Linkage analysis revealed that HLA1 was located between two cleaved amplified polymorphic sequence markers Nb14-CAPS and NbRGH1-CAPS at a distance of 10.8 and 10.9 cM, respectively. The distance between these markers was equivalent to a 682 kb interval in the genome sequence of N. benthamiana.

7.
Sci Rep ; 10(1): 22326, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339950

RESUMO

To characterize the molecular mechanisms underlying life-stage transitions in Phytophthora infestans, we initiated a chemical genetics approach by screening for a stage-specific inhibitor of morphological development from microbial culture extracts prepared mostly from actinomycetes from soil in Japan. Of the more than 700 extracts, one consistently inhibited Ph. infestans cyst germination. Purification and identification of the active compound by ESI-MS, 1H-NMR, and 13C-NMR identified ß-rubromycin as the inhibitor of cyst germination (IC50 = 19.8 µg/L); ß-rubromycin did not inhibit growth on rye media, sporangium formation, zoospore release, cyst formation, or appressorium formation in Ph. infestans. Further analyses revealed that ß-rubromycin inhibited the germination of cysts and oospores in Pythium aphanidermatum. A chemical genetic approach revealed that ß-rubromycin stimulated the expression of RIO kinase-like gene (PITG_04584) by 60-fold in Ph. infestans. Genetic analyses revealed that PITG_04584, which lacks close non-oomycete relatives, was involved in zoosporogenesis, cyst germination, and appressorium formation in Ph. infestans. These data imply that further functional analyses of PITG_04584 may contribute to new methods to suppress diseases caused by oomycetes.


Assuntos
Phytophthora infestans/genética , Doenças das Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Esporos Fúngicos/genética , Sequência de Aminoácidos/genética , Phytophthora infestans/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Quinonas/farmacologia , Esporos Fúngicos/patogenicidade
8.
iScience ; 23(7): 101332, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32668199

RESUMO

Somatic plant cells can regenerate shoots and/or roots or adventitious embryonic calluses, which may induce organ formation under certain conditions. Such regenerations occur via dedifferentiation of somatic cells, induction of organs, and their subsequent outgrowth. Despite recent advances in understanding of plant regeneration, many details of shoot induction remain unclear. Here, we artificially induced shoot stem-like green organs (SSOs) in Arabidopsis thaliana roots via simultaneous induction of two transcription factors (TFs), ARABIDOPSIS THALIANA HOMEOBOX PROTEIN 25 (ATHB25, At5g65410) and the B3 family transcription factor REPRODUCTIVE MERISTEM 7 (REM7, At3g18960). The SSOs exhibited negative gravitropism and differentiated vascular bundle phenotypes. The ATHB25/REM7 induced the expression of genes controlling shoot stem characteristics by ectopic expression in roots. Intriguingly, the restoration of root growth was seen in the consecutive and adjacent parts of the SSOs under gene induction conditions. Our findings thus provide insights into the development and regeneration of plant shoot stems.

9.
Am J Physiol Endocrinol Metab ; 318(4): E525-E537, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32017595

RESUMO

The gut microbiota is involved in metabolic disorders induced by androgen deficiency after sexual maturation in males (late-onset hypogonadism). However, its role in the energy metabolism of congenital androgen deficiency (e.g., androgen-insensitive syndrome) remains elusive. Here, we examined the link between the gut microbiota and metabolic disease symptoms in androgen receptor knockout (ARKO) mouse by administering high-fat diet (HFD) and/or antibiotics. HFD-fed male, but not standard diet-fed male or HFD-fed female, ARKO mice exhibited increased feed efficiency, obesity with increased visceral adipocyte mass and hypertrophy, hepatic steatosis, glucose intolerance, insulin resistance, and loss of thigh muscle. In contrast, subcutaneous fat mass accumulated in ARKO mice irrespective of the diet and sex. Notably, all HFD-dependent metabolic disorders observed in ARKO males were abolished after antibiotics administration. The ratios of fecal weight-to-food weight and cecum weight-to-body weight were specifically reduced by ARKO in HFD-fed males. 16S rRNA sequencing of fecal microbiota from HFD-fed male mice revealed differences in microbiota composition between control and ARKO mice. Several genera or species (e.g., Turicibacter and Lactobacillus reuteri, respectively) were enriched in ARKO mice, and antibiotics treatment spoiled the changes. Furthermore, the life span of HFD-fed ARKO males was shorter than that of control mice, indicating that androgen deficiency causes metabolic dysfunctions leading to early death. These findings also suggest that AR signaling plays a role in the prevention of metabolic dysfunctions, presumably by influencing the gut microbiome, and improve our understanding of health consequences in subjects with hypogonadism and androgen insensitivity.


Assuntos
Microbioma Gastrointestinal , Doenças Metabólicas/microbiologia , Doenças Metabólicas/mortalidade , Receptores Androgênicos/deficiência , Receptores Androgênicos/genética , Adipócitos , Tecido Adiposo/patologia , Animais , Antibacterianos/farmacologia , Dieta/efeitos adversos , Dieta Hiperlipídica , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Metabolismo dos Lipídeos , Longevidade , Masculino , Doenças Metabólicas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade , Caracteres Sexuais
10.
Biochim Biophys Acta Mol Cell Res ; 1867(2): 118563, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31666191

RESUMO

Skeletal muscle secretes biologically active proteins that contribute to muscle hypertrophy in response to either exercise or dietary intake. The identification of skeletal muscle-secreted proteins that induces hypertrophy can provide critical information regarding skeletal muscle health. Dietary provitamin A, ß-carotene, induces hypertrophy of the soleus muscle in mice. Here, we hypothesized that skeletal muscle produces hypertrophy-inducible secretory proteins via dietary ß-carotene. Knockdown of retinoic acid receptor (RAR) γ inhibited the ß-carotene-induced increase soleus muscle mass in mice. Using RNA sequencing, bioinformatic analyses, and literature searching, we predicted transglutaminase 2 (TG2) to be an all-trans retinoic acid (ATRA)-induced secretory protein in cultured C2C12 myotubes. Tg2 mRNA expression increased in ATRA- or ß-carotene-stimulated myotubes and in the soleus muscle of ß-carotene-treated mice. Knockdown of RARγ inhibited ß-carotene-increased mRNA expression of Tg2 in the soleus muscle. ATRA increased endogenous TG2 levels in conditioned medium from myotubes. Extracellular TG2 promoted the phosphorylation of Akt, mechanistic target of rapamycin (mTOR), and ribosomal p70 S6 kinase (p70S6K), and inhibitors of mTOR, phosphatidylinositol 3-kinase, and Src (rapamycin, LY294002, and Src I1, respectively) inhibited TG2-increased phosphorylation of mTOR and p70S6K. Furthermore, extracellular TG2 promoted protein synthesis and hypertrophy in myotubes. TG2 mutant lacking transglutaminase activity exerted the same effects as wild-type TG2. Knockdown of G protein-coupled receptor 56 (GPR56) inhibited the effects of TG2 on mTOR signaling, protein synthesis, and hypertrophy. These results indicated that TG2 expression was upregulated through ATRA-mediated RARγ and that extracellular TG2 induced myotube hypertrophy by activating mTOR signaling-mediated protein synthesis through GPR56, independent of transglutaminase activity.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transglutaminases/metabolismo , Animais , Crescimento Celular/efeitos dos fármacos , Linhagem Celular , Proteínas de Ligação ao GTP/genética , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Fosforilação/efeitos dos fármacos , Proteína 2 Glutamina gama-Glutamiltransferase , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Receptores do Ácido Retinoico/antagonistas & inibidores , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Receptor alfa de Ácido Retinoico/antagonistas & inibidores , Receptor alfa de Ácido Retinoico/genética , Receptor alfa de Ácido Retinoico/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Transglutaminases/genética , Tretinoína/farmacologia , beta Caroteno/administração & dosagem , beta Caroteno/farmacologia , Receptor gama de Ácido Retinoico
11.
Plant Physiol ; 180(2): 732-742, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30971448

RESUMO

Gene homology helps us understand gene function and speciation. The number of plant genes and species registered in public databanks is continuously increasing. It is useful to associate homologous genes of various plants to better understand plant speciation. We designed the Gcorn plant database for the retrieval of information on homology and evolution of a plant gene of interest. Amino acid sequences of 73 species (62 land plants and 11 green algae), containing 2,682,261 sequences, were obtained from the National Center for Biotechnology Information (NCBI) Reference Sequence database. Based on NCBI BLAST searches between these sequences, homologous genes were grouped at various thresholds of homology indices devised by the authors. To show functional and evolutionary traits of a gene of interest, a phylogenetic tree, connecting genes with high homology indices, and line charts of the numbers of genes with various homology indices, are depicted. In addition, such indices are projected on a network graph in which species studied are connected based on the ratios of homologous genes, and on a phylogenetic tree for species based on NCBI Taxonomy. Gcorn plant provides information on homologous genes at various virtual time points along with speciation in plants.


Assuntos
Bases de Dados Genéticas , Evolução Molecular , Genes de Plantas , Característica Quantitativa Herdável , Arabidopsis/genética , Filogenia , Especificidade da Espécie , Interface Usuário-Computador
12.
Vet Immunol Immunopathol ; 210: 15-22, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30947975

RESUMO

Toll-like receptor 4 (TLR4), nucleotide-binding oligomerization domain 2 (NOD2), and TNF-α play important roles in human inflammatory bowel diseases. The aim of this study was to elucidate the relationship between Toll-like receptor 4, NOD2, and TNF-α and the severity of chronic gastrointestinal diseases in dogs. We examined the expression levels of TLR4, NOD2, and TNF-α in the stomach, duodenum, ileum, colon, and rectum obtained from 21 dogs with chronic gastrointestinal disease, including inflammatory bowel disease, high-grade lymphoma, food responsive enteropathy, chronic pancreatitis, low-grade lymphoma, inflammatory colorectal polyp, and chronic colitis. Next, we demonstrated whether there is good correlation between the expression levels of TLR4, NOD2, and TNF-α and the histopathological analysis of each sample. We found that the level of TLR4 expression in the ileum of dogs with chronic gastrointestinal disease was positively associated with the histopathological severity. We also found that the level of NOD2 expression in the duodenum, stomach, and rectum was positively associated with the histopathological severity. However, there was no correlation between TNF-α expression in the 5 regions tested in this study and the histopathological severity. These findings indicate that TLR4 and NOD2 are remarkably associated with the severity of chronic gastrointestinal disease in dogs.


Assuntos
Gastroenteropatias/imunologia , Gastroenteropatias/patologia , Proteína Adaptadora de Sinalização NOD2/genética , Receptor 4 Toll-Like/genética , Animais , Biópsia , Doença Crônica , Colo/imunologia , Colo/patologia , Cães , Duodeno/imunologia , Duodeno/patologia , Feminino , Masculino , Índice de Gravidade de Doença , Transdução de Sinais , Estômago/imunologia , Estômago/patologia , Fator de Necrose Tumoral alfa/genética
13.
PLoS One ; 13(10): e0206075, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30352084

RESUMO

Analysis of the large amounts of data accumulated in public databanks can facilitate a more comprehensive understanding of molecular biological processes. Community detection from molecular biological data is paramount in characterizing evolutionary and functional traits of organisms based on gene homology and co-expression, respectively. Although there are common tools to detect local communities from a large network, no toolkit exists for detecting communities that include an element of interest based on size sensitivity, i.e., functionality to obtain local communities with preferred sizes. Herein, we present the ConfeitoGUI toolkit for detecting local communities from a correlation network involving size sensitivity. We compared the toolkit with other common tools for detection in reconstructing communities of microarray experiments of mice. In the results, ConfeitoGUI was observed to be preferable for detecting communities whose sizes are similar to those of original communities compared to other common tools. By changing simple parameters representing sizes for the toolkit, a user can obtain local communities with preferred sizes, which is beneficial for further analysis of members belonging to the communities.


Assuntos
Algoritmos , Gráficos por Computador , Interface Usuário-Computador , Animais , Humanos , Artes Marciais , Camundongos
14.
Enzyme Microb Technol ; 117: 15-22, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30037547

RESUMO

The endo-1,4-ß-mannanases (Ef-Man) gene from Eisenia fetida was determined to consist of 1131 bp and encode a 377 amino acid protein. The amino acid sequence showed similarity with the endo-1,4-ß-mannanases of Daphnia pulex (62%), Cryptopygus antarcticus (64%), Crassostrea gigas (61%), Mytilus edulis (60%), and Aplysia kurodai (58%). The gene encoding mature Ef-Man was expressed in Pichia pastoris (GS115 strain). Based on SDS-PAGE analysis, the molecular mass of the purified recombinant Ef-Man (rEf-Man) was estimated to be 39 kDa. All catalytically important residues of endo-1,4-ß-mannanases in the glycoside hydrolase (GH) family 5 were conserved in Ef-Man. The optimal temperature for rEf-Man was identified as 60 °C. HPLC and HPAEC analyses suggest that Ef-Man requires at least six subsites for efficient hydrolysis and is capable of performing transglycosylation reactions. The overall structure of rEf-Man is similar to those of GH5 family proteins, and tertiary structures around the active site are conserved among endo-1,4-ß-mannanase families. X-ray crystallographic analysis supports the hydrolysis and transglycosylation reaction mechanism determined by HPLC and HPAEC analyses.


Assuntos
Regulação da Expressão Gênica , Oligoquetos/enzimologia , beta-Manosidase/química , beta-Manosidase/metabolismo , Sequência de Aminoácidos , Animais , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Cinética , Oligoquetos/genética , Filogenia , Conformação Proteica , Alinhamento de Sequência , Especificidade por Substrato , beta-Manosidase/genética
15.
Metabolomics ; 14(5): 71, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29780292

RESUMO

INTRODUCTION: Oxygen from carbon dioxide, water or molecular oxygen, depending on the responsible enzyme, can lead to a large variety of metabolites through chemical modification. OBJECTIVES: Pathway-specific labeling using isotopic molecular oxygen (18O2) makes it possible to determine the origin of oxygen atoms in metabolites and the presence of biosynthetic enzymes (e.g., oxygenases). In this study, we established the basis of 18O2-metabolome analysis. METHODS: 18O2 labeled whole Medicago truncatula seedlings were prepared using 18O2-air and an economical sealed-glass bottle system. Metabolites were analyzed using high-accuracy and high-resolution mass spectrometry. Identification of the metabolite was confirmed by NMR following UHPLC-solid-phase extraction (SPE). RESULTS: A total of 511 peaks labeled by 18O2 from shoot and 343 peaks from root were annotated by untargeted metabolome analysis. Additionally, we identified a new flavonoid, apigenin 4'-O-[2'-O-coumaroyl-glucuronopyranosyl-(1-2)-O-glucuronopyranoside], that was labeled by 18O2. To the best of our knowledge, this is the first report of apigenin 4'-glucuronide in M. truncatula. Using MSn analysis, we estimated that 18O atoms were specifically incorporated in apigenin, the coumaroyl group, and glucuronic acid. For apigenin, an 18O atom was incorporated in the 4'-hydroxy group. Thus, non-specific incorporation of an 18O atom by recycling during one month of labeling is unlikely compared with the more specific oxygenase-catalyzing reaction. CONCLUSION: Our finding indicated that 18O2 labeling was effective not only for the mining of unknown metabolites which were biosynthesized by oxygenase-related pathway but also for the identification of metabolites whose oxygen atoms were derived from oxygenase activity.

16.
Proteomes ; 4(1)2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28248212

RESUMO

The proteome profiles of specific cell types have recently been investigated using techniques such as fluorescence activated cell sorting and laser capture microdissection. However, quantitative proteomic analysis of specific cell types has not yet been performed. In this study, to investigate the response of the proteome to zinc, magnesium, and calcium deficiency in specific cell types of Arabidopsis thaliana roots, we performed isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomics using GFP-expressing protoplasts collected by fluorescence-activated cell sorting. Protoplasts were collected from the pGL2-GFPer and pMGP-GFPer marker lines for epidermis or inner cell lines (pericycle, endodermis, and cortex), respectively. To increase the number of proteins identified, iTRAQ-labeled peptides were separated into 24 fractions by OFFGFEL electrophoresis prior to high-performance liquid chromatography coupled with mass spectrometry analysis. Overall, 1039 and 737 proteins were identified and quantified in the epidermal and inner cell lines, respectively. Interestingly, the expression of many proteins was decreased in the epidermis by mineral deficiency, although a weaker effect was observed in inner cell lines such as the pericycle, endodermis, and cortex. Here, we report for the first time the quantitative proteomics of specific cell types in Arabidopsis roots.

17.
Plant J ; 84(2): 323-34, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26306426

RESUMO

Zinc (Zn) depletion adversely affects plant growth. To avoid lethal depletion of cellular Zn, plants have evolved mechanisms to adjust the expression of genes associated with Zn homeostasis, the details of which are poorly understood. In the present study, we isolated an Arabidopsis thaliana T-DNA insertion mutant that exhibited hypersensitivity to Zn depletion. By monitoring root development under Zn-deficient conditions, we isolated a single mutant lacking the basic-region leucine-zipper transcription factor gene bZIP19. To identify proteins whose expression is affected by bZIP19, an iTRAQ-based quantitative proteomics analysis was performed using microsomal proteins from wild-type and the bzip19 mutant A. thaliana roots grown on Basal and Zn-deficient media. Of the 797 proteins identified, expression of two members of the Zrt- and Irt-related protein family, ZIP3 and ZIP9, and three defensin-like family proteins was markedly induced in wild-type but not in the bzip19 mutant under Zn-deficient conditions. Furthermore, selected reaction monitoring and quantitative real-time PCR revealed that ZIP9 expression is mediated by bZIP19 and may be partly supported by bZIP23, a homolog of bZIP19. Mutant analysis revealed that ZIP9 is involved in uptake of Zn by the roots, and the mutant lacking ZIP9 was significantly more sensitive to Zn depletion than the wild-type. These results demonstrate that bZIP19 mainly contributes to expression of genes, such as ZIP9, under Zn-deficient conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Zinco/deficiência , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Raízes de Plantas/genética , Fatores de Transcrição/genética
18.
Plant Methods ; 11: 34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26052341

RESUMO

BACKGROUND: The genus Cuscuta is a group of parasitic plants that are distributed world-wide. The process of parasitization starts with a Cuscuta plant coiling around the host stem. The parasite's haustorial organs then establish a vascular connection allowing for access to the phloem content. The host and the parasite form new cellular connections, suggesting coordination of developmental and biochemical processes. Simultaneous monitoring of gene expression in the parasite's and host's tissues may shed light on the complex events occurring between the parasitic and host cells and may help to overcome experimental limitations (i.e. how to separate host tissue from Cuscuta tissue at the haustorial connection). A novel approach is to use bioinformatic analysis to classify sequencing reads as either belonging to the host or to the parasite and to characterize the expression patterns. Owing to the lack of a comprehensive genomic dataset from Cuscuta spp., such a classification has not been performed previously. RESULTS: We first classified RNA-Seq reads from an interface region between the non-model parasitic plant Cuscuta japonica and the non-model host plant Impatiens balsamina. Without established reference sequences, we classified reads as originating from either of the plants by stepwise similarity search against de novo assembled transcript sets of C. japonica and I. balsamina, unigene sets of the same genus, and cDNA sequences of the same family. We then assembled de novo transcriptomes from the classified read sets. We assessed the quality of the classification by mapping reads to contigs of both plants, achieving a misclassification rate low enough (0.22-0.39%) to be used reliably for differential gene expression analysis. Finally, we applied our read classification method to RNA-Seq data from the interface between the non-model parasitic plant C. japonica and the model host plant Glycine max. Analysis of gene expression profiles at 5 parasitizing stages revealed differentially expressed genes from both C. japonica and G. max, and uncovered the coordination of cellular processes between the two plants. CONCLUSIONS: We demonstrated that reliable identification of differentially expressed transcripts in undissected interface region of the parasite-host association is feasible and informative with respect to differential-expression patterns.

19.
Plant Physiol ; 168(1): 47-59, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25761715

RESUMO

Grape (Vitis vinifera) accumulates various polyphenolic compounds, which protect against environmental stresses, including ultraviolet-C (UV-C) light and pathogens. In this study, we looked at the transcriptome and metabolome in grape berry skin after UV-C irradiation, which demonstrated the effectiveness of omics approaches to clarify important traits of grape. We performed transcriptome analysis using a genome-wide microarray, which revealed 238 genes up-regulated more than 5-fold by UV-C light. Enrichment analysis of Gene Ontology terms showed that genes encoding stilbene synthase, a key enzyme for resveratrol synthesis, were enriched in the up-regulated genes. We performed metabolome analysis using liquid chromatography-quadrupole time-of-flight mass spectrometry, and 2,012 metabolite peaks, including unidentified peaks, were detected. Principal component analysis using the peaks showed that only one metabolite peak, identified as resveratrol, was highly induced by UV-C light. We updated the metabolic pathway map of grape in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and in the KaPPA-View 4 KEGG system, then projected the transcriptome and metabolome data on a metabolic pathway map. The map showed specific induction of the resveratrol synthetic pathway by UV-C light. Our results showed that multiomics is a powerful tool to elucidate the accumulation mechanisms of secondary metabolites, and updated systems, such as KEGG and KaPPA-View 4 KEGG for grape, can support such studies.


Assuntos
Vias Biossintéticas , Frutas/genética , Perfilação da Expressão Gênica , Metabolômica , Estilbenos/metabolismo , Raios Ultravioleta , Vitis/genética , Vias Biossintéticas/efeitos da radiação , Calibragem , Escuridão , Fluorescência , Frutas/metabolismo , Frutas/efeitos da radiação , Ontologia Genética , Genes de Plantas , Metaboloma/genética , Metaboloma/efeitos da radiação , Anotação de Sequência Molecular , Análise de Componente Principal , Metabolismo Secundário/genética , Metabolismo Secundário/efeitos da radiação , Vitis/metabolismo , Vitis/efeitos da radiação
20.
PLoS One ; 10(3): e0120106, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25793974

RESUMO

In the present study, prior to the establishment of a method for the clinical diagnosis of chronic fatigue in humans, we validated the utility of plasma metabolomic analysis in a rat model of fatigue using capillary electrophoresis-mass spectrometry (CE-MS). In order to obtain a fatigued animal group, rats were placed in a cage filled with water to a height of 2.2 cm for 5 days. A food-restricted group, in which rats were limited to 10 g/d of food (around 50% of the control group), was also assessed. The food-restricted group exhibited weight reduction similar to that of the fatigued group. CE-MS measurements were performed to evaluate the profile of food intake-dependent metabolic changes, as well as the profile in fatigue loading, resulting in the identification of 48 metabolites in plasma. Multivariate analyses using hierarchical clustering and principal component analysis revealed that the plasma metabolome in the fatigued group showed clear differences from those in the control and food-restricted groups. In the fatigued group, we found distinctive changes in metabolites related to branched-chain amino acid metabolism, urea cycle, and proline metabolism. Specifically, the fatigued group exhibited significant increases in valine, leucine, isoleucine, and 2-oxoisopentanoate, and significant decreases in citrulline and hydroxyproline compared with the control and food-restricted groups. Plasma levels of total nitric oxide were increased in the fatigued group, indicating systemic oxidative stress. Further, plasma metabolites involved in the citrate cycle, such as cis-aconitate and isocitrate, were reduced in the fatigued group. The levels of ATP were significantly decreased in the liver and skeletal muscle, indicative of a deterioration in energy metabolism in these organs. Thus, this comprehensive metabolic analysis furthered our understanding of the pathophysiology of fatigue, and identified potential diagnostic biomarkers based on fatigue pathophysiology.


Assuntos
Biomarcadores/sangue , Fadiga/sangue , Metaboloma/fisiologia , Trifosfato de Adenosina/sangue , Animais , Eletroforese Capilar , Masculino , Óxido Nítrico/sangue , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA