Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Biol Pharm Bull ; 47(9): 1565-1574, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39343542

RESUMO

The co-mitogenic effects of the α1-adrenoceptor agonist phenylephrine on S-allyl-L-cysteine (SAC)-induced hepatocyte proliferation were examined in primary cultures of adult rat hepatocytes. The combination of phenylephrine (10-10-10-6 M) and SAC (10-6 M) exhibited a significant dose-dependent increase in the number of hepatocyte nuclei and viable cells compared to SAC alone. This combination also increased the progression of hepatocyte nuclei into the S-phase. The potentiating effect of phenylephrine on SAC-induced cell proliferation was counteracted by prazosin (an α1-adrenergic receptor antagonist) and GF109203X (selective protein kinase C (PKC) inhibitor). In addition, PMA (direct PKC activator) potentiated the proliferative effects of SAC similarly to phenylephrine. In essence, these findings suggest that PKC activity plays a crucial role in enhancing SAC-induced cell proliferation. Moreover, the effects of phenylephrine on SAC-induced Ras activity, Raf phosphorylation, and extracellular signal-regulated kinase 2 (ERK2) phosphorylation were investigated. Phenylephrine (or PMA) in combination with SAC did not augment Ras activity, but further increased ERK2 phosphorylation and its upstream B-Raf phosphorylation. These results indicate that PKC activation, triggered by stimulating adrenergic α1 receptors, further amplifies SAC-induced cell proliferation through enhanced ERK2 phosphorylation via increased B-Raf-specific phosphorylation in primary cultured hepatocytes.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 1 , Proliferação de Células , Cisteína , Hepatócitos , Fenilefrina , Proteína Quinase C , Proteínas Proto-Oncogênicas B-raf , Animais , Fenilefrina/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Proteína Quinase C/metabolismo , Cisteína/farmacologia , Cisteína/análogos & derivados , Fosforilação/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Masculino , Proteínas Proto-Oncogênicas B-raf/metabolismo , Prazosina/farmacologia , Acetato de Tetradecanoilforbol/farmacologia , Acetato de Tetradecanoilforbol/análogos & derivados , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Maleimidas/farmacologia , Ratos , Indóis/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Sinergismo Farmacológico , Ratos Sprague-Dawley , Mitógenos/farmacologia
2.
Cells ; 12(2)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36672143

RESUMO

We have studied whether growth factors, cytokines, hormones, neurotransmitters, and local hormones (autacoids) promote the proliferation of hepatic parenchymal cells (i.e., hepatocytes) using in vitro primary cultured hepatocytes. The indicators used for this purpose include changes in DNA synthesis activity, nuclear number, cell number, cell cycle, and gene expression. In addition, the intracellular signaling pathways from the plasma membrane receptors to the nucleus have been examined in detail for representative growth-promoting factors that have been found to promote DNA synthesis and cell proliferation of hepatocytes. In examining intracellular signaling pathways, the effects of specific inhibitors of presumed signaling factors involved have been pharmacologically confirmed, and the phosphorylation activities of the signaling factors (e.g., RTK, ERK, mTOR, and p70 S6K) have been evaluated. As a result, it has been found that there are many factors that promote the proliferation of hepatocytes (e.g., HGF, EGF, TGF-α, IL-1ß, TNF-α, insulin, growth hormone (GH), prostaglandin (PG)), and serotonin (5-HT)), while there are very few factors (e.g., TGF-ß1 and glucocorticoids) that inhibit the effects of growth-promoting factors. We have also found that 5-HT and GH promote the proliferation of hepatocytes via different autocrine factors (e.g., TGF-α and IGF-I, respectively). Using primary cultured hepatocytes, it will be possible to further study the molecular and cellular aspects of liver regeneration.


Assuntos
Regeneração Hepática , Fator de Crescimento Transformador alfa , Fator de Crescimento Transformador alfa/metabolismo , Fator de Crescimento Transformador alfa/farmacologia , Serotonina/metabolismo , Hepatócitos/metabolismo , DNA/metabolismo , Hormônios/metabolismo
3.
Eur J Pharmacol ; 927: 175067, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35654135

RESUMO

The cell proliferation effect of S-allyl-L-cysteine (SAC) and its mechanisms were examined in primary cultures of adult rat hepatocytes. In serum-free cultivation, SAC (10-6 M)-stimulated hepatocytes showed significant proliferation compared to control at 5-h culture; the effect was dependent on the culture time and the dose of SAC (EC50 value 8.58 × 10-8 M). In addition, SAC-stimulated hepatocytes significantly increased mRNA expression levels of c-Myc and c-Fos at 1 h and cyclin B1 at 3.5 and 4 h, respectively. In contrast, alliin and allicin, structural analogs of SAC, did not show these effects observed with SAC. The SAC-induced hepatocyte proliferation effects were completely suppressed by monoclonal antibodies against growth hormone receptor and insulin-like growth factor type-I (IGF-I) receptor, respectively. Furthermore, the Janus kinase 2 (JAK2) inhibitor TG101209, phospholipase C (PLC) inhibitor U-73122, IGF-I receptor tyrosine kinase (RTK) inhibitor AG538, PI3 kinase inhibitor LY294002, MEK inhibitor PD98059, and mTOR inhibitor rapamycin completely suppressed the SAC-induced hepatocyte proliferation. JAK2 (p125 kDa) phosphorylation in cultured hepatocytes peaked 5 min after SAC stimulation. SAC-induced IGF-I RTK (p95 kDa) and ERK2 (p42 kDa) phosphorylation had slower rises than JAK2, peaking at 20 and 30 min, respectively. These results indicate that SAC promoted cell proliferation by growth hormone receptor/JAK2/PLC pathway activation followed by activation of the IGF-I RTK/PI3K/ERK2/mTOR pathway in primary cultures of adult rat hepatocytes.


Assuntos
Cisteína/análogos & derivados , Hepatócitos , Fator de Crescimento Insulin-Like I , Janus Quinase 2 , Proteína Quinase 1 Ativada por Mitógeno , Receptor IGF Tipo 1 , Animais , Proliferação de Células/efeitos dos fármacos , Cisteína/farmacologia , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Janus Quinase 2/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Ratos , Receptor IGF Tipo 1/metabolismo , Receptores da Somatotropina/metabolismo , Serina-Treonina Quinases TOR/metabolismo
4.
Biol Pharm Bull ; 45(5): 625-634, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35491167

RESUMO

The mechanism of insulin-like growth factor type-I (IGF-I) secretion stimulated by S-allyl-L-cysteine (SAC) was investigated as part of a study of SAC-induced DNA synthesis and cell proliferation in primary cultures of adult rat hepatocytes. When 10-6 M SAC was added to the culture, the amount of IGF-I in the medium was significantly increased at 10 min. The peak IGF-I level (140 pg/mL) was observed 20 min after SAC stimulation. The SAC-induced IGF-I secretion was completely suppressed by a selective Janus kinase 2 (JAK2) inhibitor (TG101209), a selective phospholipase C (PLC) inhibitor (U-73122), an intracellular Ca2+ chelating agent (BAPTA-AM), and a granule secretion inhibitor (somatostatin). On the other hand, 10-6 M SAC-stimulated hepatocytes showed increased intracellular Ca2+ concentration in a time-dependent manner from 0 to 10 min. Phosphorylation of SAC-induced JAK2 and IGF-I receptor tyrosine kinase (RTK) was completely suppressed by TG101209. In addition, U-73122, BAPTA-AM, and somatostatin did not suppress SAC-induced JAK2 phosphorylation, but significantly suppressed SAC-induced IGF-I RTK phosphorylation. Furthermore, binding of the monoclonal antibody against growth hormone (GH) to GH receptor was dose-dependently suppressed by SAC on immunofluorescence. These results showed that SAC promotes cell proliferation by stimulating GH receptor/JAK2/phospholipase C pathways and promoting autocrine secretion of IGF-I in primary cultures of adult rat hepatocytes.


Assuntos
Fator de Crescimento Insulin-Like I , Receptores da Somatotropina , Animais , Proliferação de Células , Cisteína/metabolismo , Hepatócitos/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Janus Quinase 2/metabolismo , Ratos , Receptores da Somatotropina/metabolismo , Somatostatina/metabolismo , Fosfolipases Tipo C
5.
ACS Omega ; 6(10): 6953-6964, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33748609

RESUMO

This study evaluated the solubility of piperine (PP) in biorelevant media and the effect of its ground mixtures (GMs) and coprecipitates (CPs) on intestinal contractions when presented in inclusion complexes with α-, ß-, and γ-cyclodextrins (CDs). In the powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) measurements, CP (PP/αCD) and CP (PP/γCD) suggest the formation of inclusion complexes. The 1H-nuclear magnetic resonance (NMR) analysis showed the integrated intensity ratios of CP (PP/αCD) and CP (PP/γCD) protons to be 1/2 and 1/1, the same as the respective molar ratios in the respective GM inclusion complexes. The intestinal contraction test confirmed that the intestinal contraction rate of carbachol (CCh) in the presence of 2.0 × 10-5 M PP was comparable to that in the absence of PP. On the other hand, CP (PP/αCD), GM (PP/αCD = 1/2), and GM (PP/ßCD = 1/1) formed inclusion complexes that significantly suppressed the intestinal contractility at PP 1.0 × 10-8 M. No significant differences were observed between CP and GM. The solubility of the PP/αCD inclusion complex was 6-7 times higher than that of PP in the fasted-state-simulated intestinal fluid (FaSSIF, pH 6.5). PP functioned to suppress intestinal contraction by forming an inclusion complex. Based on this result, PP/αCD might be expected to be effective as an antidiarrheal.

6.
J Pharm Pharm Sci ; 24: 1-15, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33434118

RESUMO

BACKGROUND: We investigated the signal transduction pathway associated with growth hormone (GH)-stimulated DNA synthesis and proliferation in primary cultured hepatocytes. METHODS: Adult rat hepatocytes were isolated from normal livers by two-step in situ collagenase perfusion to facilitate disaggregation of the adult rat liver. Then hepatocytes were cultured in serum-free Williams' medium E supplemented with GH (1-100 ng/ml) in the presence or absence of test reagents. GH-induced hepatocyte DNA synthesis and proliferation were determined, and the phosphorylation activities of Janus kinase (JAK) 2 (JAK2) (p125 kDa), p95-kDa RTK, and ERK1/2 were measured by western blotting. RESULTS: Hepatocytes grown in serum-free defined medium proliferated within 5 h of culture in the presence of GH (100 ng/ml) in a concentration- and time-dependent manner (EC50 75 ng/ml). These proliferative effects of GH were almost completely blocked by an anti-GH receptor monoclonal antibody (85 ng/ml) and an anti-insulin-like growth factor (IGF)-I receptor monoclonal antibody. In addition, the proliferative effects of GH were significantly blocked by a JAK2 inhibitor (TG101209, 10-6 M), as well as specific signal-transducing inhibitors of phospholipase C (PLC; U-73122, 10-6 M), RTK (AG538, 10-6 M), phosphoinositide 3-kinase (PI3K; LY294002, 10-6 M), mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK; PD98059, 10-6 M), and mammalian target of rapamycin (mTOR; rapamycin, 10 ng/ml). GH significantly induced the phosphorylations of JAK2 (p125 kDa), p95-kDa IGF-I receptor tyrosine kinase (RTK), and ERK2 in this order according to western blotting analysis. CONCLUSIONS: The proliferative action of GH is mediated by two main signaling pathways. One includes activation of the GH receptor/JAK2/PLC/Ca2+ pathway, and the other involves activation of the p95-kDa IGF-I RTK/PI3K/ERK2/mTOR pathway in primary cultures of adult rat hepatocytes.


Assuntos
DNA/biossíntese , Hormônio do Crescimento/metabolismo , Hepatócitos/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Hepatócitos/citologia , Humanos , Masculino , Ratos , Ratos Wistar , Transdução de Sinais
7.
Eur J Pharmacol ; 891: 173753, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33245901

RESUMO

The intracellular signaling pathway of growth hormone (GH)-stimulated DNA synthesis and proliferation was investigated in primary cultures of adult rat hepatocytes. DNA synthesis and cell proliferation were detected in hepatocyte parenchymal cells grown in serum-free, defined medium containing GH (100 ng/ml). GH-stimulated hepatocyte DNA synthesis and proliferation were almost completely blocked by TG101209 (10-6 M), a selective Janus kinase (JAK)2 inhibitor, U-73122 (10-6 M), a selective phospholipase C (PLC) inhibitor, and a monoclonal antibody to insulin-like growth factor-I (IGF-I) receptor (100 ng/ml) or anti-secretion agents such as somatostatin (10-6 M) and BAPTA/AM (10-7 M). In addition, blocking monoclonal antibodies to IGF-I, but not transforming growth factor-α, completely inhibited GH-induced hepatocyte DNA synthesis and proliferation. IGF-I levels in the culture medium increased rapidly versus baseline levels within 5 min in response to GH (100 ng/ml), and the maximum IGF-I level (100 pg/ml) was reached 20 min after GH stimulation. Autocrine secretion of IGF-I into the culture medium was inhibited by a growth-inhibitory dose of TG101209, U-73122, somatostatin, or BAPTA/AM. These data indicate that the proliferative mechanism of action of GH is mediated mainly through a GH receptor/JAK2/PLC-stimulated increase in the autocrine secretion of IGF-I by primary cultured hepatocytes, followed by stimulation of the 95 kDa IGF-I receptor tyrosine kinase signaling pathway.


Assuntos
Comunicação Autócrina , Proliferação de Células/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hormônio do Crescimento Humano/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Animais , Células Cultivadas , Hepatócitos/metabolismo , Janus Quinase 2/metabolismo , Masculino , Fosforilação , Cultura Primária de Células , Ratos Wistar , Receptor IGF Tipo 1/metabolismo , Receptores da Somatotropina/agonistas , Receptores da Somatotropina/metabolismo , Via Secretória , Transdução de Sinais , Fosfolipases Tipo C/metabolismo
8.
Biol Pharm Bull ; 43(11): 1776-1784, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33132323

RESUMO

Two-thirds partial hepatectomy (PHx) was performed in rats, and the differences in effects between S-allylcysteine (SAC) and other sulfur-containing compounds on regeneration of the remaining liver and restoration of the injury were examined. Three days after two-thirds PHx, rats treated with 300 mg/kg/d, per os (p.o.) SAC showed a 1.2-fold increase in liver weight per 100 g body weight compared with saline-treated controls. In contrast, S-methylcysteine (SMC) (300 mg/kg/d, p.o.) or cysteine (Cys) (300 mg/kg/d, p.o.) did not have a regeneration-promoting effect. In the comparison with control rats, the regenerating liver of SAC-treated rats showed a significantly higher 5-bromo-2'-deoxyuridine labeling index on day 1. In contrast, serum alanine aminotransferase activity, which increases following PHx, was significantly inhibited by SAC and SMC (but not Cys) on day 1 after two-thirds PHx. In addition, SAC induced increases in insulin-like growth factor (IGF)-1 and its receptor mRNA expressions at 1 h after two-thirds PHx, and it increased phosphorylation of extracellular signal-regulated kinase (ERK)2 and Akt at 3 h after two-thirds PHx without affecting serum growth hormone levels. These results demonstrate that SAC is a mitogenic effector of normal remnant liver and promotes recuperation of liver function after two-thirds PHx. Moreover, SAC-induced proliferative effects are mediated via increased mRNA expressions of IGF-1 and its receptor and subsequent phosphorylation of ERK2 and Akt.


Assuntos
Cisteína/análogos & derivados , Fator de Crescimento Insulin-Like I/genética , Regeneração Hepática/efeitos dos fármacos , Fígado/efeitos dos fármacos , Receptor IGF Tipo 1/genética , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Cisteína/administração & dosagem , Hepatectomia , Fígado/cirurgia , Regeneração Hepática/genética , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Modelos Animais , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
9.
Biol Pharm Bull ; 42(4): 631-637, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30713268

RESUMO

Serotonin (5-hydroxytryptamine; 5-HT) can induce hepatocyte DNA synthesis and proliferation by autocrine secretion of transforming growth factor (TGF)-α through 5-HT2B receptor/phospholipase C (PLC)/Ca2+ and a signaling pathway involving epidermal growth factor (EGF)/TGF-α receptor tyrosine kinase (RTK)/extracellular signal-regulated kinase 2 (ERK2)/mammalian target of rapamycin (mTOR). In the present study, we investigated whether 5-HT or a selective 5-HT2B receptor agonist BW723C86, would stimulate phosphorylation of TGF-α RTK and ribosomal p70 S6 kinase (p70S6K) in primary cultures of adult rat hepatocytes. Western blotting analysis was used to detect 5-HT- or BW723C86 (10-6 M)-induced phosphorylation of EGF/TGF-α RTK and p70S6K. Our results showed that 5-HT- or BW723C86 (10-6 M)-induced phosphorylation of EGF/TGF-α RTK peaked at between 5 and 10 min. On the other hand, 5-HT- or BW723C86 (10-6 M)-induced phosphorylation of p70S6K peaked at about 30 min. Furthermore, a selective 5-HT2B receptor antagonist LY272015, a specific PLC inhibitor U-73122, a membrane-permeable Ca2+ chelator BAPTA/AM, an L-type Ca2+ channel blocker verapamil, somatostatin, and a specific p70S6K inhibitor LY2584702 completely abolished the phosphorylation of p70S6K induced by both 5-HT and BW723C86. These results indicate that phosphorylation of p70S6K is dependent on the 5-HT2B-receptor-mediated autocrine secretion of TGF-α. In addition, these results demonstrate that the hepatocyte proliferating action of 5-HT and BW723C86 are mediated by phosphorylation of p70S6K, a downstream element of the EGF/TGF-α RTK signaling pathway.


Assuntos
Receptores ErbB/metabolismo , Hepatócitos/efeitos dos fármacos , Indóis/farmacologia , Receptor 5-HT2B de Serotonina/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Tiofenos/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Hepatócitos/metabolismo , Masculino , Fosforilação , Cultura Primária de Células , Ratos Wistar
10.
Biol Pharm Bull ; 40(2): 205-211, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28154261

RESUMO

Polycationic compounds, such as poly-L-arginine and poly-L-ornithine (PLO), enhance the nasal absorption of hydrophilic macromolecular drugs. However, the bio availability corresponding to the dose of these enhancers has not been obtained in an open system study, where an administered solution is transferred to the pharynx because they do not exhibit mucoadhesion/retention in the nasal cavity. In this study, we prepared PEGylated-poly-L-ornithine (PEG-PLO) and investigated the effects of PEGylation on in vitro adhesion/retention properties, permeation enhancement efficiency, and cytotoxicity. PEG-PLO bearing 3-4 polyethylene glycol (PEG) chains per PLO molecule was more retentive than unmodified PLO on an inclined plate. The permeability of a model drug, FD-4, across Caco-2 cell sheets was enhanced by PEG-PLO as well as by PLO. PLO showed cytotoxicity at high concentrations, whereas PEG-PLO did not decrease cell viability, even above the concentration giving a sufficient enhancement effect. These findings suggest that PEGylation of polycationic absorption enhancers improves their adhesion/retention and decreases their cytotoxicity, which may lead to enhancers with greater utility.


Assuntos
Absorção Gastrointestinal/fisiologia , Peptídeos/metabolismo , Polietilenoglicóis/metabolismo , Tensoativos/metabolismo , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Absorção Gastrointestinal/efeitos dos fármacos , Humanos , Peptídeos/síntese química , Peptídeos/farmacologia , Polietilenoglicóis/síntese química , Polietilenoglicóis/farmacologia , Tensoativos/síntese química , Tensoativos/farmacologia
11.
Biol Pharm Bull ; 39(4): 570-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26804134

RESUMO

The mechanism of serotonin 5-HT2 receptor subtype-stimulated DNA synthesis and proliferation was investigated in primary cultures of adult rat hepatocytes to elucidate the intracellular signal transduction pathways. DNA synthesis and proliferation were detected in hepatocyte parenchymal cells grown in serum-free, defined medium containing 5-HT (10(-6) M) or the selective 5-HT2B receptor agonist BW723C86 (10(-6) M). In addition, exogenous transforming growth factor (TGF)-α (1.0 ng/mL) significantly increased hepatocyte DNA synthesis and proliferation, which reached plateau after 4 h of culture. Use of blocking monoclonal antibodies demonstrated that TGF-α, but not insulin-like growth factor-I, was involved in hepatocyte proliferation mediated by 5-HT or BW723C86. TGF-α levels in the culture medium increased significantly versus baseline within 5 min in response to 5-HT (10(-6) M) or BW723C86 (10(-6) M), and the maximum TGF-α level (30 pg/mL) was reached 10 min after 5-HT or BW723C86 stimulation. Secretion of TGF-α into the culture medium was inhibited by addition of the selective phospholipase C (PLC) inhibitor, U-73122 (10(-6) M), or somatostatin (10(-7) M). These results indicate that the proliferative mechanism of action of 5-HT is mediated mainly through a 5-HT2B receptor/Gq/PLC-stimulated increase in autocrine secretion of TGF-α from primary cultured hepatocytes.


Assuntos
DNA/metabolismo , Hepatócitos/metabolismo , Receptor 5-HT2B de Serotonina/metabolismo , Fator de Crescimento Transformador alfa/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Estrenos/farmacologia , Hepatócitos/efeitos dos fármacos , Indóis/farmacologia , Masculino , Compostos Orgânicos/farmacologia , Pirrolidinonas/farmacologia , Ratos Wistar , Serotonina/farmacologia , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Tiofenos/farmacologia , Fosfolipases Tipo C/antagonistas & inibidores
12.
Biol Pharm Bull ; 39(1): 121-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26567725

RESUMO

The involvement of serotonin (5-hydroxytryptamine; 5-HT) and the 5-HT2 receptor subtypes in the induction of DNA synthesis and proliferation was investigated in primary cultures of adult rat hepatocytes to elucidate the intracellular signal transduction mechanisms. Hepatocyte parenchymal cells maintained in a serum-free, defined medium, synthesized DNA and proliferated in the presence of 5-HT or a selective 5-HT2B receptor agonist, BW723C86, but not in the presence of 5-HT2A, or 5-HT2C receptor agonists (TCB-2 and CP809101, respectively), in a time- and dose-dependent manner. A selective 5-HT2B receptor antagonist, LY272015 (10(-7) M), and a specific phospholipase C (PLC) inhibitor, U-73122 (10(-6) M), as well as specific inhibitors of growth-related signal transducers-including AG1478, LY294002, PD98059, and rapamycin-completely inhibited 5-HT (10(-6) M)- or BW723C86 (10(-6) M)-induced hepatocyte DNA synthesis and proliferation. Both 5-HT and BW723C86 were shown to significantly stimulate the phosphorylation of epidermal growth factor (EGF)/transforming growth factor (TGF)-α receptor tyrosine kinase (p175 kDa) and extracellular signal-regulated kinase (ERK) 2 on Western blot analysis. These results suggest that the proliferative mechanism of activating 5-HT is mediated mainly through 5-HT2B receptor-stimulated Gq/PLC and EGF/TGF-α-receptor/phosphatidylinositol 3-kinase (PI3K)/ERK2/mammalian target of rapamycin (mTOR) signaling pathways in primary cultured hepatocytes.


Assuntos
Proliferação de Células/fisiologia , DNA/biossíntese , Hepatócitos/efeitos dos fármacos , Receptores 5-HT2 de Serotonina/metabolismo , Serotonina/farmacologia , Transdução de Sinais/fisiologia , Animais , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Hepatócitos/metabolismo , Indóis/farmacologia , Fosforilação , Ratos , Receptores 5-HT2 de Serotonina/classificação , Receptores 5-HT2 de Serotonina/genética , Serotonina/metabolismo , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tiofenos/farmacologia
13.
Nephrology (Carlton) ; 20(8): 523-30, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25854420

RESUMO

AIM: Patient socialization and preservation of socioeconomic status are important patient-centred outcomes for those who start dialysis, and retention of employment is a key enabler. This study examined the influence of dialysis inception and modality upon these outcomes in a contemporary Japanese cohort. METHODS: We conducted a survey of prevalent chronic dialysis patients from 5 dialysis centres in Japan. All patients who had been on peritoneal dialysis (PD) since dialysis inception were recruited, and matched with a sample of those on in-centre haemodialysis (ICHD). We assessed patients' current social functioning (Short Form 36 Health Survey), and evaluated changes to patient employment status, annual income, and general health condition from the pre-dialysis period to the current time. RESULTS: A total of 179 patients were studied (102 PD and 77 ICHD). There were no differences in social functioning by modality. Among them, 113 were employed in the pre-dialysis period with no difference by modality. Of these, 22% became unemployed after dialysis inception, with a corresponding decline in average working hours and annual income. The odds of unemployment after dialysis inception were 5.02 fold higher in those on ICHD compared to those on PD, after adjustment for covariates. There were no changes for those who were already unemployed in the pre-dialysis period. CONCLUSIONS: Employment status is significantly hampered by dialysis inception, although PD was associated with superior retention of employment and greater income compared to ICHD. This supports a positive role for PD in preservation of socioeconomic status and potentially other patient-centred outcomes.


Assuntos
Diálise Peritoneal , Avaliação de Processos em Cuidados de Saúde , Diálise Renal , Insuficiência Renal Crônica/terapia , Comportamento Social , Socialização , Fatores Socioeconômicos , Idoso , Feminino , Pesquisas sobre Atenção à Saúde , Nível de Saúde , Humanos , Renda , Japão , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Razão de Chances , Diálise Peritoneal/efeitos adversos , Diálise Peritoneal/economia , Diálise Peritoneal/psicologia , Avaliação de Processos em Cuidados de Saúde/economia , Diálise Renal/efeitos adversos , Diálise Renal/economia , Diálise Renal/psicologia , Insuficiência Renal Crônica/economia , Insuficiência Renal Crônica/psicologia , Fatores de Risco , Inquéritos e Questionários , Resultado do Tratamento , Desemprego
14.
Eur J Pharmacol ; 745: 223-33, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25445040

RESUMO

We studied the effects of interleukin (IL)-1ß on DNA synthesis and cell proliferation in primary cultures of adult rat hepatocytes in order to elucidate the mechanisms of its action. Hepatocyte parenchymal cells maintained in a serum-free, defined medium synthesized DNA and proliferated in the presence of IL-1ß (3-30 ng/ml), but not IL-1α (0.1-30 ng/ml) in a time- and dose-dependent manner. Specific inhibitors of growth-related signal transducers, such as AG1478, LY294002, PD98059, and rapamycin, completely abolished IL-1ß-stimulated hepatocyte DNA synthesis and proliferation. Western blot analysis showed that IL-1ß significantly stimulated mitogen-activated protein (MAP) kinase activation within 10 min. Addition of a monoclonal antibody against transforming growth factor (TGF)-α, but not a monoclonal antibody against insulin-like growth factor-I, to the culture dose-dependently inhibited IL-1ß-induced hepatocyte mitogenesis. Culture medium TGF-α levels increased significantly within 3 min in response to IL-1ß from baseline levels. Peak TGF-α levels (33 pg/ml) were reached at 10 min after IL-1ß stimulation. These results indicate that the proliferative mechanism of action of IL-1ß is mediated through an increase in autocrine secretion of TGF-α from primary cultured hepatocytes. Secreted TGF-α, in turn, acts as a complete mitogen to induce hepatocyte mitogenesis through the receptor tyrosine kinase/phosphatidylinositol 3-kinase/MAP kinase/mammalian target of rapamycin pathway.


Assuntos
Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Interleucina-1beta/farmacologia , Fator de Crescimento Transformador alfa/metabolismo , Animais , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Células Cultivadas , Cromonas/farmacologia , DNA/biossíntese , Relação Dose-Resposta a Droga , Flavonoides/farmacologia , Hepatócitos/citologia , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Interleucina-1alfa/administração & dosagem , Interleucina-1alfa/metabolismo , Interleucina-1alfa/farmacologia , Interleucina-1beta/administração & dosagem , Interleucina-1beta/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Morfolinas/farmacologia , Quinazolinas/farmacologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Fator de Crescimento Transformador alfa/antagonistas & inibidores , Tirfostinas/farmacologia
15.
Biol Pharm Bull ; 37(4): 597-603, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24818255

RESUMO

The effects of L-ascorbic acid and its stable analogue L-ascorbic acid 2-glucoside on the restoration of liver mass and recovery of liver function after 70% partial hepatectomy (PH), were compared with other natural vitamin C analogues in rats in vivo. L-Ascorbic acid (100 mg/kg/d, intraperitoneally (i.p.))- and L-ascorbic acid 2-glucoside (50 mg/kg/d, i.p.)-treated rats showed an approximately 1.3-fold increase in the ratio of liver weight (LW) to body weight (BW), when compared to saline (as control)-, L-dehydroascorbic acid (150 mg/kg/d, i.p.)- and D-isoascorbic acid (150 mg/kg/d, i.p.)-administrated rats on day 3 after PH. Accordingly, 5-bromo-2-deoxyuridine-labeling index in the regenerating liver was significantly higher in L-ascorbic acid- and L-ascorbic acid 2-glucoside-treated rats compared with saline-, L-dehydroascorbic acid and D-isoascorbic acid-treated rats on day 1. In control rats, liver-related serum alanine aminotransferase (ALT) activity was rapidly elevated on day 1, and then decreased to near pre-operative levels on day 5 following PH. L-Ascorbic acid and L-ascorbic acid 2-glucoside significantly lowered the serum ALT on day 1 after PH compared with saline-, L-dehydroascorbic acid- and D-isoascorbic acid-administered rats. These results demonstrate that L-ascorbic acid and L-ascorbic acid 2-glucoside significantly promote the regeneration of liver mass and function with full recovery after liver injury.


Assuntos
Alanina Transaminase/sangue , Ácido Ascórbico/análogos & derivados , Ácido Ascórbico/farmacologia , Regeneração Hepática/efeitos dos fármacos , Animais , Ácido Desidroascórbico/farmacologia , Hepatectomia , Ratos
16.
Hypertens Res ; 37(2): 139-44, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24089263

RESUMO

A major earthquake measuring 9.0 on the Richter scale struck northeastern Japan at 2:46 pm on 11 March 2011. Several reports have described transient increases in blood pressure after major earthquakes, but the impact of such increases on hemodialysis patients has not been reported. We retrospectively investigated changes in blood pressure and influencing factors in 205 patients (mean age 66.6±13.0 years; male 51.7%; median dialysis vintage 6.0 (2.0-11.0) years) on chronic dialysis at three dialysis centers in the affected area (Fukushima City) for 8 weeks after the earthquake. Pre-dialysis blood pressure was significantly elevated at 1 week after the earthquake compared with baseline (systolic vs. diastolic blood pressure: 153.1±20.2/80.1±13.5 vs. 148.6±20.0/77.5±12.8 mm Hg, P<0.001), similarly post-dialysis blood pressure was elevated for up to 8 weeks. Independent factors influencing changes in blood pressure after the earthquake comprised baseline blood pressure and α-blockers. The earthquake induced a significant elevation in blood pressure among patients on chronic dialysis, and activation of the sympathetic nervous system might at least in part be associated with the mechanism underlying this increase.


Assuntos
Pressão Sanguínea/fisiologia , Terremotos , Falência Renal Crônica/fisiopatologia , Falência Renal Crônica/terapia , Diálise Renal , Antagonistas Adrenérgicos alfa/uso terapêutico , Antagonistas Adrenérgicos beta/uso terapêutico , Idoso , Anti-Hipertensivos/uso terapêutico , Comorbidade , Diuréticos/uso terapêutico , Feminino , Seguimentos , Humanos , Japão/epidemiologia , Masculino , Pessoa de Meia-Idade , Sistema Renina-Angiotensina/efeitos dos fármacos
17.
Eur J Pharmacol ; 700(1-3): 2-12, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23270716

RESUMO

We investigated the effects of α- and ß-adrenoceptor agonists on L-ascorbic acid-induced hepatocyte DNA synthesis and proliferation in primary cultures of adult rat hepatocytes. The results showed that phenylephrine (10(-6) M) and metaproterenol (10(-6) M) alone did not induce hepatocyte DNA synthesis and proliferation. However, when combined with L-ascorbic acid (10(-6) M), these adrenoceptor agonists potentiated the hepatocyte DNA synthesis and proliferation induced by L-ascorbic acid. Then intracellular signal transduction mechanisms for the effects of phenylephrine and metaproterenol on L-ascorbic acid-induced hepatocyte mitogenesis were examined. Western blot analysis showed that phenylephrine and metaproterenol did not potentiate L-ascorbic acid-induced insulin-like growth factor I receptor tyrosine kinase phosphorylation. In contrast, they both significantly potentiated L-ascorbic acid-induced extracellular-signal regulated kinase-2 (ERK2) phosphorylation within 5 min. Moreover, cell-permeable second messenger analogs phorbol ester (10(-7) M) and 8-bromo cAMP (10(-7) M) mimicked the effects of phenylephrine and metaproterenol on L-ascorbic acid-induced ERK2 phosphorylation. The effects of these adrenoceptor agents were specifically antagonized by GF109203X and H-89, respectively. These results indicate that activation of ERK2 via protein kinas C and protein kinase A represents a mechanism for potentiation of L-ascorbic acid-induced hepatocyte DNA synthesis and proliferation in primary cultures of adult rat hepatocytes.


Assuntos
Ácido Ascórbico/farmacologia , DNA/biossíntese , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais/efeitos dos fármacos , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Sinergismo Farmacológico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hepatócitos/metabolismo , Masculino , Metaproterenol/farmacologia , Fenilefrina/farmacologia , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar , Receptor IGF Tipo 1/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Fatores de Tempo
18.
Biol Pharm Bull ; 36(3): 496-500, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23257956

RESUMO

We have already reported that poly-L-arginine (PLA) remarkably enhanced the in vivo nasal absorption of hydrophilic macromolecules without producing any significant epithelial damage in rats. In the present study, we examined whether PLA could enhance the absorption of a model hydrophilic macromolecule, fluorescein isothiocyanate-dextran (FD-4), across the intestinal mucosa, as well as the nasal mucosa, by an in situ closed-loop method using the rat intestine. PLA was found to enhance the intestinal absorption of FD-4 in a concentration-dependent manner within the concentrations investigated in this study, but segment-specific differences were found to be associated with this effect (ileum>jejunum>duodenum≧colon). The factors responsible for the segment-specific differences were also investigated by intestinal absorption studies using aprotinin, a trypsin inhibitor, and an analysis of the expression of occludin, a tight junction protein. In the small intestine, the differences in the effect of PLA on the absorption of FD-4 may be related to the enzymatic degradation of PLA. In the colon, the reduced effect of PLA on the absorption of FD-4 may be related to the smaller surface area for absorption and the higher expression of occludin compared with other segments.


Assuntos
Imidazóis/farmacocinética , Absorção Intestinal/efeitos dos fármacos , Peptídeos/farmacologia , Éteres Fenílicos/farmacocinética , Animais , Relação Dose-Resposta a Droga , Masculino , Ratos , Ratos Wistar
19.
Eur J Pharmacol ; 683(1-3): 276-84, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22429571

RESUMO

We examined the effects of L-ascorbic acid and its analogues on DNA synthesis and cell proliferation. We also investigated the signal transduction pathways involved in the induction of mitogenesis by L-ascorbic acid and its analogues using primary cultures of adult rat hepatocytes. Following a 4-h serum-free cultivation, both L-ascorbic acid and its stable analogue, L-ascorbic acid 2-glucoside, time- and dose-dependently stimulated hepatocyte DNA synthesis and cell proliferation, with EC50 values of 6.46×10⁻8 M and 3.34×10⁻8 M, respectively. Dehydroascorbic acid (10⁻6 M-10⁻5 M) weakly stimulated hepatocyte mitogenesis, whereas isoascorbic acid (10⁻9 M-10⁻5 M) had no effect. Hepatocyte mitogenesis induced by L-ascorbic acid or L-ascorbic acid 2-glucoside was dose-dependently abolished by treatment with monoclonal antibodies against insulin-like growth factor (IGF)-I receptor, but not by treatment with monoclonal antibodies against insulin receptor or IGF-II receptor. Western blot analysis showed that both L-ascorbic acid and L-ascorbic acid 2-glucoside significantly stimulated IFG-I receptor tyrosine kinase activity within 3 min, and mitogen-activated protein (MAP) kinase activity within 5 min. These results demonstrate that both L-ascorbic acid and L-ascorbic acid 2-glucoside induce DNA synthesis and cell proliferation in primary cultures of adult rat hepatocytes by interacting with the IGF-I receptor site and by activating the receptor tyrosine kinase/MAP kinase pathway.


Assuntos
Ácido Ascórbico/análogos & derivados , Ácido Ascórbico/metabolismo , Proliferação de Células , DNA/biossíntese , Hepatócitos/metabolismo , Mitógenos/farmacologia , Transdução de Sinais , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Ácido Ascórbico/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Glucosídeos/farmacologia , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Concentração Osmolar , Ratos , Ratos Wistar , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 2/antagonistas & inibidores , Receptor IGF Tipo 2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
20.
Biol Pharm Bull ; 34(10): 1542-52, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21963493

RESUMO

We investigated the effects of α- and ß-adrenergic agonists on epidermal growth factor (EGF)-stimulated extracellular-signal regulated kinase (ERK) isoforms in primary cultures of adult rat hepatocytes. Hepatocytes were isolated and cultured with EGF (20 ng/ml) and/or α(1)-, α(2)- and ß(2)-adrenergic agonists. Phosphorylated ERK isoforms (ERK1; p44 mitogen-activated protein kinase (MAPK) and ERK2; p42 MAPK) were detected by Western blotting analysis using anti-phospho-ERK1/2 antibody. The results show that EGF induced a 2.5-fold increase in ERK2-, but not ERK1-, phosphorylation within 3 min. This EGF-induced ERK2 activation was abolished by treatment with the EGF-receptor kinase inhibitor AG1478 (10(-7) M) or the MEK (MAPK kinase) inhibitor PD98059 (10(-6) M). The α(2)-adrenergic and ß(2)-adrenergic agonists, UK14304 (10(-6) M) and metaproterenol (10(-6) M), respectively, had no effect in the absence of EGF, but metaproterenol significantly potentiated EGF-induced ERK2 phosphorylation. Moreover, the cell-permeable cAMP analog 8-bromo cAMP (10(-7) M), also potentiated EGF-induced ERK2 phosphorylation. The effects of these analogs were antagonized by the protein kinase A (PKA) inhibitor H-89 (10(-7) M). These results suggest that direct or indirect activation of PKA represents a positive regulatory mechanism for EGF stimulation of ERK2 induction.


Assuntos
AMP Cíclico/agonistas , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hepatócitos/efeitos dos fármacos , Terapia de Alvo Molecular , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Animais , Tartarato de Brimonidina , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , AMP Cíclico/análogos & derivados , Avaliação Pré-Clínica de Medicamentos , Hepatócitos/fisiologia , MAP Quinase Quinase 2/análise , Masculino , Metaproterenol/farmacologia , Proteína Quinase 3 Ativada por Mitógeno/análise , Fosforilação , Quinoxalinas/farmacologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA