RESUMO
Acute myeloid leukemia (AML) is a rapidly progressing heterogeneous disease with a high mortality rate, which is characterized by hyperproliferation of atypical immature myeloid cells. The number of AML patients is expected to increase in the near future, due to the old-age-associated nature of AML and increased longevity in the human population. RUNX1 and CEBPA, key transcription factors (TFs) of hematopoiesis, are frequently and independently mutated in AML. RUNX1 and CEBPA can bind TET2 demethylase and attract it to their binding sites (TFBS) in cell lines, leading to DNA demethylation of the regions nearby. Since TET2 does not have a DNA-binding domain, TFs are crucial for its guidance to target genomic locations. In this paper, we show that RUNX1 and CEBPA mutations in AML patients affect the methylation of important regulatory sites that resulted in the silencing of several RUNX1 and CEBPA target genes, most likely in a TET2-dependent manner. We demonstrated that hypermethylation of TFBS in AML cells with RUNX1 mutations was associated with resistance to anticancer chemotherapy. Demethylation therapy restored expression of the RUNX1 target gene, BIK, and increased sensitivity of AML cells to chemotherapy. If our results are confirmed, mutations in RUNX1 could be an indication for prescribing the combination of cytotoxic and demethylation therapies.
Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia Mieloide Aguda , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , DNA/genética , DNA/metabolismo , Metilação de DNA/genética , Desmetilação/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , MutaçãoRESUMO
Background: Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by genetic and epigenetic aberrations that alter the differentiation capacity of myeloid progenitor cells. The transcription factor CEBPα is frequently mutated in AML patients leading to an increase in DNA methylation in many genomic locations. Previously, it has been shown that ecCEBPα (extra coding CEBP α) - a lncRNA transcribed in the same direction as CEBPα gene - regulates DNA methylation of CEBPα promoter in cis. Here, we hypothesize that ecCEBPα could participate in the regulation of DNA methylation in trans. Method: First, we retrieved the methylation profile of AML patients with mutated CEBPα locus from The Cancer Genome Atlas (TCGA). We then predicted the ecCEBPα secondary structure in order to check the potential of ecCEBPα to form triplexes around CpG loci and checked if triplex formation influenced CpG methylation, genome-wide. Results: Using DNA methylation profiles of AML patients with a mutated CEBPα locus, we show that ecCEBPα could interact with DNA by forming DNA:RNA triple helices and protect regions near its binding sites from global DNA methylation. Further analysis revealed that triplex-forming oligonucleotides in ecCEBPα are structurally unpaired supporting the DNA-binding potential of these regions. ecCEBPα triplexes supported with the RNA-chromatin co-localization data are located in the promoters of leukemia-linked transcriptional factors such as MLF2. Discussion: Overall, these results suggest a novel regulatory mechanism for ecCEBPα as a genome-wide epigenetic modulator through triple-helix formation which may provide a foundation for sequence-specific engineering of RNA for regulating methylation of specific genes.
Assuntos
Leucemia Mieloide Aguda , RNA Longo não Codificante , Ilhas de CpG/genética , Metilação de DNA , Humanos , Leucemia Mieloide Aguda/genética , Regiões Promotoras GenéticasRESUMO
BACKGROUND: Breast Cancer (BC), a common fatal disease and the deadliest cancer next to lung cancer, is characterized by an abnormal growth of cells in the tissues of the breast. BC chemotherapy is marked by targeting the activities of some receptors such as Estrogen Receptor alpha (ER-α). At present, one of the most commonly used and approved marketed therapeutic drugs for BC is tamoxifen. Despite the short-term success of tamoxifen usage, its long time treatment has been associated with significant side effects. Therefore, there is a pressing need for the development of novel anti-estrogens for the prevention and treatment of BC. OBJECTIVE: In this study, we evaluate the inhibitory effect of Cannabis sativa phytoconstituents on ER-α. METHODS: Glide and induced fit docking followed by ADME, automated QSAR and binding free energy (Δ>Gbind) studies were used to evaluate anti-breast cancer and ER-α inhibitory activity of Cannabis sativa, which has been reported to be effective in inhibiting breast cancer cell proliferation. RESULTS: Phyto-constituents of Cannabis sativa possess lower docking scores and good ΔGbind when compared to that of tamoxifen. ADME and AutoQSAR studies revealed that our lead compounds demonstrated the properties required to make them promising therapeutic agents. CONCLUSION: The results of this study suggest that naringenin, dihydroresveratrol, baicalein, apigenin and cannabitriol could have relatively better inhibitory activity than tamoxifen and could be a better and patent therapeutic candidate in the treatment of BC. Further research such as in vivo and/or in vitro assays could be conducted to verify the ability of these compounds.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Cannabis/química , Receptor alfa de Estrogênio/antagonistas & inibidores , Preparações de Plantas/farmacologia , Antagonistas de Estrogênios/química , Antagonistas de Estrogênios/farmacologia , Feminino , Humanos , Simulação de Acoplamento Molecular , Patentes como Assunto , Preparações de Plantas/química , Relação Quantitativa Estrutura-Atividade , Tamoxifeno/farmacologiaRESUMO
BACKGROUND: Trypanosoma brucei (T. brucei) is the cause of the deadly human African trypanosomiasis (HAT) with a case fatality ratio of 10%. OBJECTIVE: Targeting the essential Trypanosomal glucose metabolism pathway through the inhibition of phosphoglycerate kinase (PGK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a valid strategy for anti-T. brucei drug development. METHODS: Here, quantitative structure activity relationship, molecular docking and microscopic studies were used to describe the mode of inhibition of selected compounds from the pathogen box PGK and GAPDH. RESULTS: We identified 4 hit compounds from the pathogen box with optimal binding and chemical interactions. Notably, it was identified that interacting charge surface and atomic mass were key aspects of both PGK and GAPDH inhibition. Also, novel anti-trypanosomal compounds were identified from the pathogen box and their half maximal inhibitory concentrations were described. CONCLUSION: Our study presents new anti-trypanosomal compounds with optimal pharmacological profiles and an optimization strategy for improving target specificity in the rational design of novel anti-trypanosomal compounds.
Assuntos
Gliceraldeído-3-Fosfato Desidrogenases/antagonistas & inibidores , Fosfoglicerato Quinase/antagonistas & inibidores , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Desenho de Fármacos , Desenvolvimento de Medicamentos , Glucose/metabolismo , Humanos , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade , Tripanossomicidas/químicaRESUMO
BACKGROUND: P-21 activating kinase 4 (PAK4) is implicated in poor prognosis of many human tumors, particularly in Triple Negative Breast Cancer (TNBC) progression. Studies have revealed the crucial role of PAK4 in cell proliferation, anchorage-independent growth and cell migration among other hallmarks of cancer. Thus, PAK4 is an attractive target for anti-TNBC drug design and development. In our research, we used in silico methods to investigate the inhibitory potentials of kaempferol against PAK4 as compared with co-crystallized 4T6 and a standard PAK4 inhibitor-KPT-9274. The ligands were docked into the ATP-binding site of the target enzyme and post-docking validations were calculated. RESULTS: In the molecular docking results, kaempferol had higher affinity than the standard KPT-9274. However, the SP and XP docking scores for the co-crystallized 4T6 were the highest. The analyses of the docking showed a favorable interaction between kaempferol and the catalytic-important aminoacyl residues, especially GLU396, LEU398 and ASP458 in the ATP-binding site of PAK4 when compared with what was obtained in the 4T6-PAK4 complex. Molecular mechanics based MM-GBSA was used to validate docking results. The free energy calculations revealed that kaempferol may have a favorable biological activity. Furthermore, the druggability of each ligand was assessed using the QikProp module and the SwissADME online tool. Kaempferol possessed a propitious drug-like property when compared to the standard ligands. CONCLUSIONS: We, therefore, put forward a logical argument that kaempferol can be further evaluated as a potential PAK4 inhibitor in TNBC.
Assuntos
Quempferóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Quinases Ativadas por p21/antagonistas & inibidores , Acrilamidas/farmacologia , Acrilamidas/uso terapêutico , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Domínio Catalítico/efeitos dos fármacos , Feminino , Humanos , Quempferóis/uso terapêutico , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias de Mama Triplo Negativas/patologia , Quinases Ativadas por p21/metabolismoRESUMO
GSK3B has been an interesting drug target in the pharmaceutical industry. Its dysfunctional expression has prognostic significance in the top 3 cause of death associated with non-communicable diseases (cancer, Alzheimer's disease and type 2 diabetes). Previous studies have shown clearly that inhibiting GSK3B has proven therapeutic significance in Alzheimer's disease, but its contribution to various cancers has not been clearly resolved. In this study we report the contribution and prognostic significance of GSK3B to two breast cancer subtypes; ductal carcinoma in-situ (DCIS) and invasive ductal carcinoma (IDC) using the Oncomine platform. We performed high throughput screening using molecular docking. We identified BT-000775, a compound that was subjected to further computational hit optimization protocols. Through computational predictions, BT-000775 is a highly selective GSK3B inhibitor, with superior binding affinity and robust ADME profiles suitable for the patho-physiological presentations.
RESUMO
BACKGROUND: Inhibition of penicillin binding protein 2A (PBP2A) represents a sound drug design strategy in combatting Methicillin resistant Staphylococcus aureus (MRSA). Considering the urgent need for effective antimicrobials in combatting MRSA infections, we have developed a statistically robust ensemble of molecular descriptors (1, 2, & 3-D) from compounds targeting PBP2A in vivo. METHODS: 37 (training set: 26, test set: 11) PBP2A-inhibitors were submitted for descriptor generation after which an unsupervised, non-exhaustive genetic algorithm (GA) was deployed for fishing out the best descriptor subset. Assignment of descriptors to a regression model was accomplished with the Partial Least Square (PLS) algorithm. At the end, an ensemble of 30 descriptors accurately predicted the ligand bioactivity, IC50 (R = 0.9996, R2 = 0.9992, R2 a = 0.9949, SEE =, 0.2297 Q2 LOO = 0.9741). RESULTS AND CONCLUSION: Inferentially, we noticed that the overall efficacy of this model greatly depends on atomic polarizability and negative charge (electron) density. Besides the formula derived, the high dimensional model also offers critical insights into salient cheminformatics parameter to note during hit-to-lead PBP2A-antagonist optimization.
Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/enzimologia , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Desenho Assistido por Computador , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Análise dos Mínimos Quadrados , Ligantes , Testes de Sensibilidade Microbiana , Proteínas de Ligação às Penicilinas/metabolismo , Relação Quantitativa Estrutura-Atividade , Infecções Estafilocócicas/tratamento farmacológicoRESUMO
Asthma is an inflammatory disease of the airway that poses a major threat to human health. With increase industrialization in the developed and developing countries, the incidence of asthma is on the rise. The ß2-adrenergic receptor is an important target in designing anti-asthmatic drugs. The synthetic agonists of the ß2-adrenergic receptor used over the years proved effective, but with indispensable side effects, thereby limiting their therapeutic use on a long-term scale. Inverse agonists of this receptor, although initially contraindicated, had been reported to have long-term beneficial effects. Phytochemicals from Agemone mexicana were screened against the human ß2-adrenergic receptor in the agonist, inverse agonist, covalent agonist, and the antagonist conformations. Molecular docking of the phyto-constituents showed that the plant constituents bind better to the inverse agonist bound conformation of the protein, and revealed two flavanones; eriodictyol and hesperitin, with lower free energy (ΔG) values and higher affinities to the inverse agonist bound receptor than the co-crystallized ligand. Eriodictyol and hesperitin bind with the glide score of -10.684 and - 9.958 kcal/mol respectively, while the standard compound ICI-118551, binds with glide score of -9.503 kcal/mol. Further interaction profiling at the protein orthosteric site and ADME/Tox screening confirmed the drug-like properties of these compounds.