Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Yeungnam Med Sci ; 41(2): 61-73, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351610

RESUMO

Acute kidney ischemia-reperfusion (IR) injury is a life-threatening condition that predisposes individuals to chronic kidney disease. Since the kidney is one of the most energy-demanding organs in the human body and mitochondria are the powerhouse of cells, mitochondrial dysfunction plays a central role in the pathogenesis of IR-induced acute kidney injury. Mitochondrial dysfunction causes a reduction in adenosine triphosphate production, loss of mitochondrial dynamics (represented by persistent fragmentation), and impaired mitophagy. Furthermore, the pathological accumulation of succinate resulting from fumarate reduction under oxygen deprivation (ischemia) in the reverse flux of the Krebs cycle can eventually lead to a burst of reactive oxygen species driven by reverse electron transfer during the reperfusion phase. Accumulating evidence indicates that improving mitochondrial function, biogenesis, and dynamics, and normalizing metabolic reprogramming within the mitochondria have the potential to preserve kidney function during IR injury and prevent progression to chronic kidney disease. In this review, we summarize recent advances in understanding the detrimental role of metabolic reprogramming and mitochondrial dysfunction in IR injury and explore potential therapeutic strategies for treating kidney IR injury.

2.
Diabetes Metab J ; 48(3): 405-417, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38311057

RESUMO

BACKGRUOUND: Reactive oxygen species (ROS) and inflammation are reported to have a fundamental role in the pathogenesis of ischemia-reperfusion (IR) injury, a leading cause of acute kidney injury. The present study investigated the role of pyruvate dehydrogenase kinase 4 (PDK4) in ROS production and inflammation following IR injury. METHODS: We used a streptozotocin-induced diabetic C57BL6/J mouse model, which was subjected to IR by clamping both renal pedicles. Cellular apoptosis and inflammatory markers were evaluated in NRK-52E cells and mouse primary tubular cells after hypoxia and reoxygenation using a hypoxia work station. RESULTS: Following IR injury in diabetic mice, the expression of PDK4, rather than the other PDK isoforms, was induced with a marked increase in pyruvate dehydrogenase E1α (PDHE1α) phosphorylation. This was accompanied by a pronounced ROS activation, as well as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and monocyte chemoattractant protein-1 (MCP-1) production. Notably, sodium dichloroacetate (DCA) attenuated renal IR injury-induced apoptosis which can be attributed to reducing PDK4 expression and PDHE1α phosphorylation levels. DCA or shPdk4 treatment reduced oxidative stress and decreased TNF-α, IL-6, IL-1ß, and MCP-1 production after IR or hypoxia-reoxygenation injury. CONCLUSION: PDK4 inhibition alleviated renal injury with decreased ROS production and inflammation, supporting a critical role for PDK4 in IR mediated damage. This result indicates another potential target for reno-protection during IR injury; accordingly, the role of PDK4 inhibition needs to be comprehensively elucidated in terms of mitochondrial function during renal IR injury.


Assuntos
Apoptose , Diabetes Mellitus Experimental , Inflamação , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Masculino , Espécies Reativas de Oxigênio/metabolismo , Inflamação/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/etiologia , Rim/patologia , Rim/metabolismo , Piruvato Desidrogenase (Lipoamida)/metabolismo , Ácido Dicloroacético/farmacologia , Fosforilação/efeitos dos fármacos , Nefropatias Diabéticas/metabolismo
3.
Nat Commun ; 15(1): 645, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245505

RESUMO

Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is currently the leading cause of chronic liver disease worldwide. Metabolic Dysfunction-Associated Steatohepatitis (MASH), an advanced form of MASLD, can progress to liver fibrosis, cirrhosis, and hepatocellular carcinoma. Based on recent findings by our team that liver 5HT2A knockout male mice suppressed steatosis and reduced fibrosis-related gene expression, we developed a peripheral 5HT2A antagonist, compound 11c for MASH. It shows good in vitro activity, stability, and in vivo pharmacokinetics (PK) in rats and dogs. Compound 11c also shows good in vivo efficacy in a diet-induced obesity (DIO) male mice model and in a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) male mice model, effectively improving histologic features of MASH and fibrosis. According to the tissue distribution study using [14C]-labeled 11c, the compound was determined to be a peripheral 5HT2A antagonist. Collectively, first-in-class compound 11c shows promise as a therapeutic agent for the treatment of MASLD and MASH.


Assuntos
Fígado Gorduroso , Neoplasias Hepáticas , Fenômenos Fisiológicos Musculoesqueléticos , Masculino , Camundongos , Animais , Cães , Ratos , Fígado Gorduroso/tratamento farmacológico , Cirrose Hepática/tratamento farmacológico , Camundongos Knockout
4.
Bioorg Med Chem Lett ; 94: 129461, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37652099

RESUMO

Tryptophan hydroxylase 1 (TPH1) has emerged as a target for the treatment of metabolic diseases including obesity and fatty liver disease. A series of xanthine derivatives were synthesized and evaluated for their TPH1 inhibition. Among the synthesized compounds, compound 40 showed good in vitro activity and liver microsomal stability. Docking studies revealed that compound 40 showed better binding to TPH1 via key intermolecular interactions involving the xanthine scaffold, imidazo-thiazolyl ring, and hydroxyl-containing phenacyl moiety. In addition, compound 40 effectively suppressed the adipocyte differentiation of 3 T3-L1 cells.


Assuntos
Alcaloides , Hepatopatia Gordurosa não Alcoólica , Humanos , Diuréticos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/tratamento farmacológico , Triptofano Hidroxilase/antagonistas & inibidores , Xantinas/química , Xantinas/farmacologia
5.
Kidney Int ; 104(4): 724-739, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37399974

RESUMO

Ischemia-reperfusion (IR) injury, a leading cause of acute kidney injury (AKI), is still without effective therapies. Succinate accumulation during ischemia followed by its oxidation during reperfusion leads to excessive reactive oxygen species (ROS) and severe kidney damage. Consequently, the targeting of succinate accumulation may represent a rational approach to the prevention of IR-induced kidney injury. Since ROS are generated primarily in mitochondria, which are abundant in the proximal tubule of the kidney, we explored the role of pyruvate dehydrogenase kinase 4 (PDK4), a mitochondrial enzyme, in IR-induced kidney injury using proximal tubule cell-specific Pdk4 knockout (Pdk4ptKO) mice. Knockout or pharmacological inhibition of PDK4 ameliorated IR-induced kidney damage. Succinate accumulation during ischemia, which is responsible for mitochondrial ROS production during reperfusion, was reduced by PDK4 inhibition. PDK4 deficiency established conditions prior to ischemia resulting in less succinate accumulation, possibly because of a reduction in electron flow reversal in complex II, which provides electrons for the reduction of fumarate to succinate by succinate dehydrogenase during ischemia. The administration of dimethyl succinate, a cell-permeable form of succinate, attenuated the beneficial effects of PDK4 deficiency, suggesting that the kidney-protective effect is succinate-dependent. Finally, genetic or pharmacological inhibition of PDK4 prevented IR-induced mitochondrial damage in mice and normalized mitochondrial function in an in vitro model of IR injury. Thus, inhibition of PDK4 represents a novel means of preventing IR-induced kidney injury, and involves the inhibition of ROS-induced kidney toxicity through reduction in succinate accumulation and mitochondrial dysfunction.


Assuntos
Traumatismo por Reperfusão , Ácido Succínico , Camundongos , Animais , Ácido Succínico/farmacologia , Espécies Reativas de Oxigênio , Camundongos Knockout , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Isquemia/tratamento farmacológico , Rim , Mitocôndrias , Reperfusão
6.
Proc Natl Acad Sci U S A ; 120(20): e2219644120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155882

RESUMO

Emerging evidence suggest that transcription factors play multiple roles in the development of pancreatitis, a necroinflammatory condition lacking specific therapy. Estrogen-related receptor γ (ERRγ), a pleiotropic transcription factor, has been reported to play a vital role in pancreatic acinar cell (PAC) homeostasis. However, the role of ERRγ in PAC dysfunction remains hitherto unknown. Here, we demonstrated in both mice models and human cohorts that pancreatitis is associated with an increase in ERRγ gene expression via activation of STAT3. Acinar-specific ERRγ haploinsufficiency or pharmacological inhibition of ERRγ significantly impaired the progression of pancreatitis both in vitro and in vivo. Using systematic transcriptomic analysis, we identified that voltage-dependent anion channel 1 (VDAC1) acts as a molecular mediator of ERRγ. Mechanistically, we showed that induction of ERRγ in cultured acinar cells and mouse pancreata enhanced VDAC1 expression by directly binding to specific site of the Vdac1 gene promoter and resulted in VDAC1 oligomerization. Notably, VDAC1, whose expression and oligomerization were dependent on ERRγ, modulates mitochondrial Ca2+ and ROS levels. Inhibition of the ERRγ-VDAC1 axis could alleviate mitochondrial Ca2+ accumulation, ROS formation and inhibit progression of pancreatitis. Using two different mouse models of pancreatitis, we showed that pharmacological blockade of ERRγ-VDAC1 pathway has therapeutic benefits in mitigating progression of pancreatitis. Likewise, using PRSS1R122H-Tg mice to mimic human hereditary pancreatitis, we demonstrated that ERRγ inhibitor also alleviated pancreatitis. Our findings highlight the importance of ERRγ in pancreatitis progression and suggests its therapeutic intervention for prevention and treatment of pancreatitis.


Assuntos
Pancreatite Crônica , Canal de Ânion 1 Dependente de Voltagem , Animais , Humanos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima , Canal de Ânion 1 Dependente de Voltagem/metabolismo
7.
Diabetes Metab J ; 47(5): 653-667, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37098411

RESUMO

BACKGRUOUND: CycloZ, a combination of cyclo-His-Pro and zinc, has anti-diabetic activity. However, its exact mode of action remains to be elucidated. METHODS: KK-Ay mice, a type 2 diabetes mellitus (T2DM) model, were administered CycloZ either as a preventive intervention, or as a therapy. Glycemic control was evaluated using the oral glucose tolerance test (OGTT), and glycosylated hemoglobin (HbA1c) levels. Liver and visceral adipose tissues (VATs) were used for histological evaluation, gene expression analysis, and protein expression analysis. RESULTS: CycloZ administration improved glycemic control in KK-Ay mice in both prophylactic and therapeutic studies. Lysine acetylation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha, liver kinase B1, and nuclear factor-κB p65 was decreased in the liver and VATs in CycloZ-treated mice. In addition, CycloZ treatment improved mitochondrial function, lipid oxidation, and inflammation in the liver and VATs of mice. CycloZ treatment also increased the level of ß-nicotinamide adenine dinucleotide (NAD+), which affected the activity of deacetylases, such as sirtuin 1 (Sirt1). CONCLUSION: Our findings suggest that the beneficial effects of CycloZ on diabetes and obesity occur through increased NAD+ synthesis, which modulates Sirt1 deacetylase activity in the liver and VATs. Given that the mode of action of an NAD+ booster or Sirt1 deacetylase activator is different from that of traditional T2DM drugs, CycloZ would be considered a novel therapeutic option for the treatment of T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Camundongos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Lisina/metabolismo , Lisina/uso terapêutico , Metabolismo dos Lipídeos , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuína 1/uso terapêutico , NAD/metabolismo , NAD/uso terapêutico , Acetilação , Hiperglicemia/tratamento farmacológico
8.
Proc Natl Acad Sci U S A ; 119(34): e2120157119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969774

RESUMO

Dynamic regulation of mitochondrial morphology provides cells with the flexibility required to adapt and respond to electron transport chain (ETC) toxins and mitochondrial DNA-linked disease mutations, yet the mechanisms underpinning the regulation of mitochondrial dynamics machinery by these stimuli is poorly understood. Here, we show that pyruvate dehydrogenase kinase 4 (PDK4) is genetically required for cells to undergo rapid mitochondrial fragmentation when challenged with ETC toxins. Moreover, PDK4 overexpression was sufficient to promote mitochondrial fission even in the absence of mitochondrial stress. Importantly, we observed that the PDK4-mediated regulation of mitochondrial fission was independent of its canonical function, i.e., inhibitory phosphorylation of the pyruvate dehydrogenase complex (PDC). Phosphoproteomic screen for PDK4 substrates, followed by nonphosphorylatable and phosphomimetic mutations of the PDK4 site revealed cytoplasmic GTPase, Septin 2 (SEPT2), as the key effector molecule that acts as a receptor for DRP1 in the outer mitochondrial membrane to promote mitochondrial fission. Conversely, inhibition of the PDK4-SEPT2 axis could restore the balance in mitochondrial dynamics and reinvigorates cellular respiration in mitochondrial fusion factor, mitofusin 2-deficient cells. Furthermore, PDK4-mediated mitochondrial reshaping limits mitochondrial bioenergetics and supports cancer cell growth. Our results identify the PDK4-SEPT2-DRP1 axis as a regulator of mitochondrial function at the interface between cellular bioenergetics and mitochondrial dynamics.


Assuntos
Dinâmica Mitocondrial , Proteínas Quinases , Respiração Celular/genética , GTP Fosfo-Hidrolases/genética , Expressão Gênica , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Proteínas Quinases/metabolismo
9.
Eur J Med Chem ; 239: 114517, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35732081

RESUMO

Non-alcoholic fatty liver disease (NAFLD), attributed to excessive fat accumulation in the liver, is reportedly prevalent worldwide. NAFLD is one of the leading causes of chronic liver disease, including non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatic cellular carcinoma (HCC). The peripheral roles of serotonin (5-hydroxytryptamine, 5HT) were found to regulate hepatic lipid metabolism. Among serotonin receptor subtypes, 5HT2A receptor is known to regulate hepatic lipid metabolism. Hepatic lipid accumulation and hepatic triglyceride (TG) were reduced in liver-specific 5HT2A receptor knockout (5HT2A receptor LKO) mice upon high-fat diet (HFD) feeding. In the present study, we explored a series of new peripherally acting 5HT2A receptor antagonists. Compound 14a displayed good in vitro activity, with an IC50 value of 0.17 nM. Compound 14a exhibited good microsomal stability, no significant CYP and hERG inhibition, and 5HT receptor subtype selectivity. The brain-to-plasma ratio of 14a was below the lower limit of quantification, indicating limited blood-brain barrier (BBB) penetration. HFD-fed 14a treated mice showed decreased liver steatosis and lobular inflammation. These results demonstrate the potential of newly synthesized peripheral 5HT2A receptor antagonists for treating NAFLD.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Carcinoma Hepatocelular/patologia , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Serotonina/metabolismo , Tirosina/metabolismo
10.
Exp Mol Med ; 51(10): 1-12, 2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31570705

RESUMO

Dyslipidemia-induced atherosclerosis, which has a risk of high morbidity and mortality, can be alleviated by metabolic activation associated with mitochondrial function. The effect of dichloroacetate (DCA), a general pyruvate dehydrogenase kinase (PDK) inhibitor, on in vivo energy expenditure in ApoE-/- mice fed a western diet (WD) has not yet been investigated. WD-fed ApoE-/- mice developed atherosclerotic plaques and hyperlipidemia along with obesity, which were significantly ameliorated by DCA administration. Increased oxygen consumption was associated with heat production in the DCA-treated group, with no change in food intake or physical activity compared with those of the control. These processes were correlated with the increased gene expression of Dio2 and Ucp-1, which represents brown adipose tissue (BAT) activation, in both WD-induced atherosclerosis and high-fat-induced obesity models. In addition, we found that DCA stimulated hepatic fibroblast growth factor 21 (Fgf21) mRNA expression, which might be important for lowering lipid levels and insulin sensitization via BAT activation, in a dose- and time-dependent manner associated with serum FGF21 levels. Interestingly, Fgf21 mRNA expression was mediated in an AMP-activated protein kinase (AMPK)-dependent manner within several minutes after DCA treatment independent of peroxisome proliferator-activated receptor alpha (PPARα). Taken together, the results suggest that enhanced glucose oxidation by DCA protects against atherosclerosis by inducing hepatic FGF21 expression and BAT activation, resulting in augmented energy expenditure for heat generation.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Aterosclerose/tratamento farmacológico , Fármacos Cardiovasculares/farmacologia , Ácido Dicloroacético/farmacologia , Inibidores Enzimáticos/farmacologia , Fatores de Crescimento de Fibroblastos/genética , Placa Aterosclerótica/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/etiologia , Aterosclerose/genética , Aterosclerose/patologia , Dieta Ocidental/efeitos adversos , Dislipidemias/tratamento farmacológico , Dislipidemias/etiologia , Dislipidemias/genética , Dislipidemias/patologia , Metabolismo Energético/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/agonistas , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/genética , Obesidade/patologia , Consumo de Oxigênio/efeitos dos fármacos , PPAR alfa/genética , PPAR alfa/metabolismo , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Iodotironina Desiodinase Tipo II
11.
Front Immunol ; 10: 944, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134063

RESUMO

Metabolic reprogramming during macrophage polarization supports the effector functions of these cells in health and disease. Here, we demonstrate that pyruvate dehydrogenase kinase (PDK), which inhibits the pyruvate dehydrogenase-mediated conversion of cytosolic pyruvate to mitochondrial acetyl-CoA, functions as a metabolic checkpoint in M1 macrophages. Polarization was not prevented by PDK2 or PDK4 deletion but was fully prevented by the combined deletion of PDK2 and PDK4; this lack of polarization was correlated with improved mitochondrial respiration and rewiring of metabolic breaks that are characterized by increased glycolytic intermediates and reduced metabolites in the TCA cycle. Genetic deletion or pharmacological inhibition of PDK2/4 prevents polarization of macrophages to the M1 phenotype in response to inflammatory stimuli (lipopolysaccharide plus IFN-γ). Transplantation of PDK2/4-deficient bone marrow into irradiated wild-type mice to produce mice with PDK2/4-deficient myeloid cells prevented M1 polarization, reduced obesity-associated insulin resistance, and ameliorated adipose tissue inflammation. A novel, pharmacological PDK inhibitor, KPLH1130, improved high-fat diet-induced insulin resistance; this was correlated with a reduction in the levels of pro-inflammatory markers and improved mitochondrial function. These studies identify PDK2/4 as a metabolic checkpoint for M1 phenotype polarization of macrophages, which could potentially be exploited as a novel therapeutic target for obesity-associated metabolic disorders and other inflammatory conditions.


Assuntos
Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/imunologia , Complexo Piruvato Desidrogenase/imunologia , Acetilcoenzima A/imunologia , Acetilcoenzima A/metabolismo , Animais , Citosol/imunologia , Citosol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina/genética , Resistência à Insulina/imunologia , Macrófagos/classificação , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Obesidade/etiologia , Obesidade/genética , Obesidade/imunologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/deficiência , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Complexo Piruvato Desidrogenase/metabolismo , Ácido Pirúvico/imunologia , Ácido Pirúvico/metabolismo
12.
Kidney Int ; 91(4): 880-895, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28040265

RESUMO

Clinical prescription of cisplatin, one of the most widely used chemotherapeutic agents, is limited by its side effects, particularly tubular injury-associated nephrotoxicity. Since details of the underlying mechanisms are not fully understood, we investigated the role of pyruvate dehydrogenase kinase (PDK) in cisplatin-induced acute kidney injury. Among the PDK isoforms, PDK4 mRNA and protein levels were markedly increased in the kidneys of mice treated with cisplatin, and c-Jun N-terminal kinase activation was involved in cisplatin-induced renal PDK4 expression. Treatment with the PDK inhibitor sodium dichloroacetate (DCA) or genetic knockout of PDK4 attenuated the signs of cisplatin-induced acute kidney injury, including apoptotic morphology of the kidney tubules along with numbers of TUNEL-positive cells, cleaved caspase-3, and renal tubular injury markers. Cisplatin-induced suppression of the mitochondrial membrane potential, oxygen consumption rate, expression of electron transport chain components, cytochrome c oxidase activity, and disruption of mitochondrial morphology were noticeably improved in the kidneys of DCA-treated or PDK4 knockout mice. Additionally, levels of the oxidative stress marker 4-hydroxynonenal and mitochondrial reactive oxygen species were attenuated, whereas superoxide dismutase 2 and catalase expression and glutathione synthetase and glutathione levels were recovered in DCA-treated or PDK4 knockout mice. Interestingly, lipid accumulation was considerably attenuated in DCA-treated or PDK4 knockout mice via recovered expression of peroxisome proliferator-activated receptor-α and coactivator PGC-1α, which was accompanied by recovery of mitochondrial biogenesis. Thus, PDK4 mediates cisplatin-induced acute kidney injury, suggesting that PDK4 might be a therapeutic target for attenuating cisplatin-induced acute kidney injury.


Assuntos
Injúria Renal Aguda/prevenção & controle , Cisplatino , Túbulos Renais/enzimologia , Proteínas Serina-Treonina Quinases/deficiência , Injúria Renal Aguda/enzimologia , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Animais , Apoptose , Caspase 3/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Metabolismo Energético , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica , Predisposição Genética para Doença , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/ultraestrutura , Masculino , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Biogênese de Organelas , Estresse Oxidativo , Fenótipo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo
14.
Sci Rep ; 5: 16577, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26560812

RESUMO

Vascular calcification, a pathologic response to defective calcium and phosphate homeostasis, is strongly associated with cardiovascular mortality and morbidity. In this study, we have observed that pyruvate dehydrogenase kinase 4 (PDK4) is upregulated and pyruvate dehydrogenase complex phosphorylation is increased in calcifying vascular smooth muscle cells (VSMCs) and in calcified vessels of patients with atherosclerosis, suggesting that PDK4 plays an important role in vascular calcification. Both genetic and pharmacological inhibition of PDK4 ameliorated the calcification in phosphate-treated VSMCs and aortic rings and in vitamin D3-treated mice. PDK4 augmented the osteogenic differentiation of VSMCs by phosphorylating SMAD1/5/8 via direct interaction, which enhances BMP2 signaling. Furthermore, increased expression of PDK4 in phosphate-treated VSMCs induced mitochondrial dysfunction followed by apoptosis. Taken together, our results show that upregulation of PDK4 promotes vascular calcification by increasing osteogenic markers with no adverse effect on bone formation, demonstrating that PDK4 is a therapeutic target for vascular calcification.


Assuntos
Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo , Calcificação Vascular/metabolismo , Animais , Apoptose/genética , Biomarcadores , Remodelação Óssea/genética , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Osteogênese/genética , Fosforilação , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/química
15.
Vascul Pharmacol ; 73: 11-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26187356

RESUMO

Dipeptidyl peptidase-4 (DPP-4) inhibitors exert a potent anti-hyperglycemic effect and reduce cardiovascular risk in type 2 diabetic patients. Several studies have shown that DPP-4 inhibitors including sitagliptin have beneficial effects in atherosclerosis and cardiac infarction involving reactive oxygen species. Here, we show that gemigliptin can directly attenuate the abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) via enhanced NF-E2-related factor 2 (Nrf2) activity. Gemigliptin dramatically prevented ligation injury-induced neointimal hyperplasia in mouse carotid arteries. Likewise, the proliferation of primary VSMCs was significantly attenuated by gemigliptin in a dose-dependent manner consistent with a decrease in phospho-Rb, resulting in G1 cell cycle arrest. We found that gemigliptin enhanced Nrf2 activity not only by mRNA expression, but also by increasing Keap1 proteosomal degradation by p62, leading to the induction of Nrf2 target genes such as HO-1 and NQO1. The anti-proliferative role of gemigliptin disappeared with DPP-4 siRNA knockdown, indicating that the endogenous DPP-4 in VSMCs contributed to the effect of gemigliptin. In addition, gemigliptin diminished TNF-α-mediated cell adhesion molecules such as MCP-1 and VCAM-1 and reduced MMP2 activity in VSMCs. Taken together, our data indicate that gemigliptin exerts a preventative effect on the proliferation and migration of VSMCs via Nrf2.


Assuntos
Lesões das Artérias Carótidas/tratamento farmacológico , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Piperidonas/farmacologia , Pirimidinas/farmacologia , Remodelação Vascular/efeitos dos fármacos , Animais , Lesões das Artérias Carótidas/enzimologia , Lesões das Artérias Carótidas/patologia , Moléculas de Adesão Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dipeptidil Peptidase 4/genética , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Células HEK293 , Humanos , Hiperplasia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , Neointima , Interferência de RNA , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção
16.
Exp Mol Med ; 47: e145, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25744297

RESUMO

Scoparone, which is a major constituent of Artemisia capillaries, has been identified as an anticoagulant, hypolipidemic, vasorelaxant, anti-oxidant and anti-inflammatory drug, and it is used for the traditional treatment of neonatal jaundice. Therefore, we hypothesized that scoparone could suppress the proliferation of VSMCs by interfering with STAT3 signaling. We found that the proliferation of these cells was significantly attenuated by scoparone in a dose-dependent manner. Scoparone markedly reduced the serum-stimulated accumulation of cells in the S phase and concomitantly increased the proportion of cells in the G0/G1 phase, which was consistent with the reduced expression of cyclin D1, phosphorylated Rb and survivin in the VSMCs. Cell adhesion markers, such as MCP-1 and ICAM-1, were significantly reduced by scoparone. Interestingly, this compound attenuated the increase in cyclin D promoter activity by inhibiting the activities of both the WT and active forms of STAT3. Similarly, the expression of a cell proliferation marker induced by PDGF was decreased by scoparone with no change in the phosphorylation of JAK2 or Src. On the basis of the immunofluorescence staining results, STAT3 proteins phosphorylated by PDGF were predominantly localized to the nucleus and were markedly reduced in the scoparone-treated cells. In summary, scoparone blocks the accumulation of STAT3 transported from the cytosol to the nucleus, leading to the suppression of VSMC proliferation through G1 phase arrest and the inhibition of Rb phosphorylation. This activity occurs independent of the form of STAT3 and upstream of kinases, such as Jak and Src, which are correlated with abnormal vascular remodeling due to the presence of an excess of growth factors following vascular injury. These data provide convincing evidence that scoparone may be a new preventative agent for the treatment of cardiovascular diseases.


Assuntos
Cumarínicos/farmacologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Fator de Transcrição STAT3/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Becaplermina , Biomarcadores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Proteínas Proto-Oncogênicas c-sis/metabolismo , Ratos , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica
17.
Vascul Pharmacol ; 63(1): 29-36, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25135648

RESUMO

Dimethyl fumarate (DMF) has several pharmacological benefits including immunomodulation and prevention of fibrosis, which are dependent on the NF-E2-related factor 2 (Nrf2) antioxidant pathways. Therefore, we hypothesized that DMF could attenuate vascular calcification via Nrf2 activation. Vascular calcification induced by hyperphosphataemia was significantly inhibited by DMF in vascular smooth muscle cells (VSMCs) in a dose-dependent manner. DMF-mediated Nrf2 upregulation was accompanied by the reduced expressions of genes related with osteoblast-like phenotype based on promoter activity, mRNA and protein expression, and von Kossa staining. Likewise, Nrf2 overexpression significantly decreased the formation of calcium deposit similar to the level of osteogenic staining in VSMCs, and DMF with Nrf2 knockdown failed to attenuate hyperphosphatemia induced vascular calcification. Furthermore, DMF significantly attenuated the calcification of ex vivo ring culture from both rat common carotid artery and mouse thoracic aorta as well as in vivo mouse model of Vitamin D3-induced calcification consistent with the increased Nrf2 protein levels in early stage of calcification by DMF. In conclusion, our data support that DMF stimulates Nrf2 activity to attenuate hyperphosphatamia in vitro or Vitamin D3-induced in vivo vascular calcification, which would be a beneficial effect on vascular diseases induced by oxidative stress such as vascular calcification.


Assuntos
Fumaratos/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Calcificação Vascular/tratamento farmacológico , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/patologia , Cálcio/metabolismo , Artéria Carótida Primitiva/efeitos dos fármacos , Artéria Carótida Primitiva/patologia , Fumarato de Dimetilo , Relação Dose-Resposta a Droga , Fumaratos/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos , Calcificação Vascular/patologia
18.
Redox Biol ; 2: 855-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25009787

RESUMO

Excessive proliferation of vascular smooth muscle cells (VSMCs) and incomplete re-endothelialization is a major clinical problem limiting the long-term efficacy of percutaneous coronary angioplasty. We tested if dimethylfumarate (DMF), an anti-psoriasis drug, could inhibit abnormal vascular remodeling via NF-E2-related factor 2 (Nrf2)-NAD(P)H quinone oxidoreductase 1 (NQO1) activity. DMF significantly attenuated neointimal hyperplasia induced by balloon injury in rat carotid arteries via suppression of the G1 to S phase transition resulting from induction of p21 protein in VSMCs. Initially, DMF increased p21 protein stability through an enhancement in Nrf2 activity without an increase in p21 mRNA. Later on, DMF stimulated p21 mRNA expression through a process dependent on p53 activity. However, heme oxygenase-1 (HO-1) or NQO1 activity, well-known target genes induced by Nrf2, were dispensable for the DMF induction of p21 protein and the effect on the VSMC proliferation. Likewise, DMF protected endothelial cells from TNF-α-induced apoptosis and the dysfunction characterized by decreased eNOS expression. With knock-down of Nrf2 or NQO1, DMF failed to prevent TNF-α-induced cell apoptosis and decreased eNOS expression. Also, CD31 expression, an endothelial specific marker, was restored in vivo by DMF. In conclusion, DMF prevented abnormal proliferation in VSMCs by G1 cell cycle arrest via p21 upregulation driven by Nrf2 and p53 activity, and had a beneficial effect on TNF-α-induced apoptosis and dysfunction in endothelial cells through Nrf2-NQO1 activity suggesting that DMF might be a therapeutic drug for patients with vascular disease.


Assuntos
Apoptose/efeitos dos fármacos , Fumaratos/farmacologia , Imunossupressores/farmacologia , Músculo Liso Vascular/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Reestenose Coronária/patologia , Reestenose Coronária/prevenção & controle , Fumarato de Dimetilo , Fumaratos/uso terapêutico , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Humanos , Hiperplasia/prevenção & controle , Imunossupressores/uso terapêutico , Masculino , Músculo Liso Vascular/citologia , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima/efeitos dos fármacos
19.
PLoS One ; 8(4): e61411, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637829

RESUMO

The excessive accumulation of adipocytes contributes to the development of obesity and obesity-related diseases. The interactions of several transcription factors, such as C/EBPß, PPARγ, C/EBPα, Nrf2, and STAT3, are required for adipogenic differentiation. Dimethylfumarate (DMF), an immune modulator and antioxidant, may function as an inhibitor of STAT3 and an activator of Nrf2. This study examined whether DMF inhibits adipogenic differentiation of 3T3-L1 preadipocytes by inhibiting STAT3 or activating Nrf2. DMF suppressed 3T3-L1 preadipocyte differentiation to mature adipocytes in a dose-dependent manner as determined by Oil Red O staining. The mRNA and protein levels of adipogenic genes, including C/EBPß, C/EBPα, PPARγ, SREBP-1c, FAS, and aP2, were significantly lower in DMF-treated 3T3-L1 preadipocytes. Suppression of adipogenic differentiation by DMF treatment resulted primarily from inhibition of the early stages of differentiation. DMF inhibits clonal expansion during adipogenic differentiation through induction of a G1 cell cycle arrest. Additionally, DMF regulates cell cycle-related proteins, such as p21, pRb, and cyclin D. DMF treatment markedly inhibited differentiation medium-induced STAT3 phosphorylation and inhibited STAT3 transcriptional activation of a reporter construct composed of four synthetic STAT3-response elements. Moreover, inhibition of endogenous Nrf2 activity using a dominant negative Nrf2 did not abolish the DMF-induced inhibition of adipogenic differentiation of 3T3-L1 preadipocytes. In summary, DMF is a negative regulator of adipogenic differentiation based on its regulation of adipogenic transcription factors and cell cycle proteins. This negative regulation by DMF is mediated by STAT3 inhibition, but is unlikely to involve Nrf2 activation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Fumaratos/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Animais , Ciclo Celular/efeitos dos fármacos , Fumarato de Dimetilo , Expressão Gênica/efeitos dos fármacos , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo
20.
PLoS One ; 7(10): e45870, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056222

RESUMO

TGF-ß plays a key role in the development of renal fibrosis. Suppressing the TGF-ß signaling pathway is a possible therapeutic approach for preventing this disease, and reports have suggested that Nrf2 protects against renal fibrosis by inhibiting TGF-ß signaling. This study examines whether dimethylfumarate (DMF), which stimulates Nrf2, prevents renal fibrosis via the Nrf2-mediated suppression of TGF-ß signaling. Results showed that DMF increased nuclear levels of Nrf2, and both DMF and adenovirus-mediated overexpression of Nrf2 (Ad-Nrf2) decreased PAI-1, alpha-smooth muscle actin (α-SMA), fibronectin and type 1 collagen expression in TGF-ß-treated rat mesangial cells (RMCs) and renal fibroblast cells (NRK-49F). Additionally, DMF and Ad-Nrf2 repressed TGF-ß-stimulated Smad3 activity by inhibiting Smad3 phosphorylation, which was restored by siRNA-mediated knockdown of Nrf2 expression. However, downregulation of the antioxidant response element (ARE)-driven Nrf2 target genes such as NQO1, HO-1 and glutathione S-transferase (GST) did not reverse the inhibitory effect of DMF on TGF-ß-induced upregulation of profibrotic genes or extracellular matrix proteins, suggesting an ARE-independent anti-fibrotic activity of DMF. Finally, DMF suppressed unilateral ureteral obstruction (UUO)-induced renal fibrosis and α-SMA, fibronectin and type 1 collagen expression in the obstructed kidneys from UUO mice, along with increased and decreased expression of Nrf2 and phospho-Smad3, respectively. In summary, DMF attenuated renal fibrosis via the Nrf2-mediated inhibition of TGF-ß/Smad3 signaling in an ARE-independent manner, suggesting that DMF could be used to treat renal fibrosis.


Assuntos
Fumaratos/farmacologia , Rim/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Actinas/genética , Actinas/metabolismo , Animais , Western Blotting , Linhagem Celular , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Fumarato de Dimetilo , Fibronectinas/genética , Fibronectinas/metabolismo , Fibrose , Células HEK293 , Humanos , Imunossupressores/farmacologia , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fosforilação/efeitos dos fármacos , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Interferência de RNA , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA