Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Cachexia Sarcopenia Muscle ; 14(6): 2733-2746, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37923703

RESUMO

BACKGROUND: Exercise stimulates the activation of muscle satellite cells, which facilitate the maintenance of stem cells and their myogenic conversion during muscle regeneration. However, the underlying mechanism is not yet fully understood. This study shows that the transcriptional co-activator with PDZ-binding motif (TAZ) stimulates muscle regeneration via satellite cell activation. METHODS: Tazf/f mice were crossed with the paired box gene 7 (Pax7)creERT2 mice to generate muscle satellite cell-specific TAZ knockout (sKO) mice. Mice were trained in an endurance exercise programme for 4 weeks. Regenerated muscles were harvested and analysed by haematoxylin and eosin staining. Muscle tissues were also analysed by immunofluorescence staining, immunoblot analysis and quantitative reverse transcription PCR (qRT-PCR). For the in vitro study, muscle satellite cells from wild-type and sKO mice were isolated and analysed. Mitochondrial DNA was quantified by qRT-PCR using primers that amplify the cyclooxygenase-2 region of mitochondrial DNA. Quiescent and activated satellite cells were stained with MitoTracker Red CMXRos to analyse mitochondria. To study the p38 mitogen-activated protein kinase (MAPK)-TAZ signalling axis, p38 MAPK was activated by introducing the MAPK kinase 6 plasmid into satellite cells and also inhibited by treatment with the p38 MAPK inhibitor, SB203580. RESULTS: TAZ interacts with Pax7 to induce Myf5 expression and stimulates mammalian target of rapamycin signalling for satellite cell activation. In sKO mice, TAZ depletion reduces muscle satellite cell number by 38% (0.29 ± 0.073 vs. 0.18 ± 0.034, P = 0.0082) and muscle regeneration. After muscle injury, TAZ levels (2.59-fold, P < 0.0001) increase in committed cells compared to self-renewing cells during asymmetric satellite cell division. Mechanistically, the polarity protein Pard3 induces TAZ (2.01-fold, P = 0.008) through p38 MAPK, demonstrating that the p38 MAPK-TAZ axis is important for muscle regeneration. Physiologically, endurance exercise training induces muscle satellite cell activation and increases muscle fibre diameter (1.33-fold, 43.21 ± 23.59 vs. 57.68 ± 23.26 µm, P = 0.0004) with increased TAZ levels (1.76-fold, P = 0.017). However, sKO mice had a 39% reduction in muscle satellite cell number (0.20 ± 0.03 vs. 0.12 ± 0.02, P = 0.0013) and 24% reduction in muscle fibre diameter compared to wild-type mice (61.07 ± 23.33 vs. 46.60 ± 24.29 µm, P = 0.0006). CONCLUSIONS: Our results demonstrate a novel mechanism of TAZ-induced satellite cell activation after muscle injury and exercise, suggesting that activation of TAZ in satellite cells may ameliorate the muscle ageing phenotype and may be an important target protein for the drug development in sarcopenia.


Assuntos
Células Satélites de Músculo Esquelético , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Camundongos , DNA Mitocondrial/metabolismo , Mamíferos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais , Proteína Quinase 14 Ativada por Mitógeno
2.
Theranostics ; 13(12): 4182-4196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554269

RESUMO

Background: Endothelial dysfunction is a systemic disorder and is involved in the pathogenesis of several human diseases. Hemodynamic shear stress plays an important role in vascular homeostasis including nitric oxide (NO) production. Impairment of NO production in endothelial cells stimulates the capillarization of liver sinusoidal endothelial cells, followed by hepatic stellate cell activation, inducing liver fibrosis. However, the detailed mechanism underlying NO production is not well understood. In hepatocytes, transcriptional co-activator with PDZ-binding motif (TAZ) has been reported to be involved in liver fibrosis. However, the role of endothelial TAZ in liver fibrosis has not been investigated. In this study, we uncovered the role TAZ in endothelial cell NO production, and its subsequent effects on liver fibrosis. Methods: TAZ-floxed mice were crossed with Tie2-cre transgenic mice, to generate endothelium-specific TAZ-knockout (eKO) mice. To induce liver damage, a 3,5-diethoxycarboncyl-1,4-dihydrocollidine, methionine-choline-deficient diet, or partial hepatectomy was applied. Liver fibrosis and endothelial dysfunction were analyzed in wild-type and eKO mice after liver damage. In addition, liver sinusoidal endothelial cell (LSEC) was used for in vitro assays of protein and mRNA levels. To study transcriptional regulation, chromatin immunoprecipitation and luciferase reporter assays were performed. Results: In liver of eKO mice, LSEC capillarization was observed, evidenced by loss of fenestrae and decreased LSEC-specific marker gene expression. LSEC capillarization of eKO mouse is caused by downregulation of endothelial nitric oxide synthase expression and subsequent decrease in NO concentration, which is transcriptionally regulated by TAZ-KLF2 binding to Nos3 promoter. Diminished NO concentration by TAZ knockout in endothelium accelerates liver fibrosis induced by liver damages. Conclusions: Endothelial TAZ inhibits damage-induced liver fibrosis via NO production. This highlights an unappreciated role of TAZ in vascular health and liver diseases.


Assuntos
Hepatopatias , Óxido Nítrico , Camundongos , Humanos , Animais , Óxido Nítrico/metabolismo , Células Endoteliais/metabolismo , Cirrose Hepática/metabolismo , Hepatopatias/patologia , Fígado/metabolismo , Endotélio/metabolismo
3.
Front Mol Biosci ; 10: 1330400, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38234582

RESUMO

Extracellular vesicles (EVs) are membrane-enclosed particles secreted by a variety of cell types. These vesicles encapsulate a diverse range of molecules, including proteins, nucleic acids, lipids, metabolites, and even organelles derived from their parental cells. While EVs have emerged as crucial mediators of intercellular communication, they also hold immense potential as both biomarkers and therapeutic agents for numerous diseases. A thorough understanding of EV biogenesis is crucial for the development of EV-based diagnostic developments since the composition of EVs can reflect the health and disease status of the donor cell. Moreover, when EVs are taken up by target cells, they can exert profound effects on gene expression, signaling pathways, and cellular behavior, which makes these biomolecules enticing targets for therapeutic interventions. Yet, despite decades of research, the intricate processes underlying EV biogenesis by donor cells and subsequent uptake by recipient cells remain poorly understood. In this review, we aim to summarize current insights and advancements in the biogenesis and uptake mechanisms of EVs. By shedding light on the fundamental mechanisms governing EV biogenesis and delivery, this review underscores the potential of basic mechanistic research to pave the way for developing novel diagnostic strategies and therapeutic applications.

4.
J Cell Physiol ; 237(12): 4504-4516, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36250997

RESUMO

Chronic liver injury follows inflammation and liver fibrosis; however, the molecular mechanism underlying fibrosis has not been fully elucidated. In this study, the role of ductal WW domain-containing transcription regulator 1 (WWTR1)/transcriptional coactivator with PDZ-binding motif (TAZ) was investigated after liver injury. Ductal TAZ-knockout (DKO) mice showed decreased liver fibrosis following a Diethyl 1,4-dihydro-2,4,6-trimethyl-3,5-pyridinedicarboxylate (DDC) diet compared to wild-type (WT) mice, as evidenced by decreased expression levels of fibrosis inducers, including connective tissue growth factor (Ctgf)/cellular communication network factor 2 (CCN2), cysteine-rich angiogenic inducer 61 (Cyr61/CCN1), and transforming growth factor beta 1 (Tgfb1), in DKO mice. Similarly, TAZ-knockout (KO) cholangiocyte organoids showed decreased expression of fibrosis inducers. Additionally, the culture supernatant of TAZ-KO cholangiocyte organoids decreased the fibrogenic gene expression in liver stellate cells. Further studies revealed that prominin 1 (PROM1/CD133) stimulated TAZ for fibrosis. After the administration of DDC diet, fibrosis was decreased in CD133-KO (CD133-KO) mice compared to that in WT mice. Similarly, CD133-KO cholangiocyte organoids showed decreased Ctgf, Cyr61, and Tgfb1 expression levels compared to WT cholangiocyte organoids. Mechanistically, CD133 stabilized TAZ via Src activation. Inhibition of Src decreased TAZ levels. Similarly, CD133-knockdown HCT116 cells showed decreased TAZ levels, but reintroduction of active Src recovered the TAZ levels. Taken together, our results suggest that TAZ facilitates liver fibrosis after a DDC diet via the CD133-Src-TAZ axis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Doença Hepática Crônica Induzida por Substâncias e Drogas , Transativadores , Animais , Camundongos , Dieta , Fibrose , Peptídeos e Proteínas de Sinalização Intracelular , Fígado , Cirrose Hepática/induzido quimicamente , Camundongos Knockout , Fatores de Transcrição/genética , Proteínas Proto-Oncogênicas pp60(c-src) , Proteínas Adaptadoras de Transdução de Sinal/genética
5.
Nat Commun ; 13(1): 653, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115527

RESUMO

Mitochondria are energy-generating organelles and mitochondrial biogenesis is stimulated to meet energy requirements in response to extracellular stimuli, including exercise. However, the mechanisms underlying mitochondrial biogenesis remain unknown. Here, we demonstrate that transcriptional coactivator with PDZ-binding motif (TAZ) stimulates mitochondrial biogenesis in skeletal muscle. In muscle-specific TAZ-knockout (mKO) mice, mitochondrial biogenesis, respiratory metabolism, and exercise ability were decreased compared to wild-type mice. Mechanistically, TAZ stimulates the translation of mitochondrial transcription factor A via Ras homolog enriched in brain (Rheb)/Rheb like 1 (Rhebl1)-mTOR axis. TAZ stimulates Rhebl1 expression via TEA domain family transcription factor. Rhebl1 introduction by adeno-associated virus or mTOR activation recovered mitochondrial biogenesis in mKO muscle. Physiologically, mKO mice did not stimulate exercise-induced mitochondrial biogenesis. Collectively, our results suggested that TAZ is a novel stimulator for mitochondrial biogenesis and exercise-induced muscle adaptation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ligação a DNA/genética , Mitocôndrias Musculares/genética , Proteínas Mitocondriais/genética , Biogênese de Organelas , Condicionamento Físico Animal , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Células Cultivadas , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Camundongos Knockout , Mitocôndrias Musculares/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo
6.
Biochem Biophys Res Commun ; 524(1): 242-248, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31983436

RESUMO

Ultraviolet (UV) irradiation induces the proliferation and differentiation of keratinocytes in the basal layer of the epidermis, which increases epidermal thickness in skin regeneration. However, the mechanism underlying this phenomenon is not yet known in detail. In this study, we aimed to demonstrate that the transcriptional coactivator with PDZ-binding motif (TAZ) stimulates epidermal regeneration by increasing keratinocyte proliferation. During epidermal regeneration, TAZ is localized in the nucleus of keratinocytes of the basal layer and stimulates epidermal growth factor receptor (EGFR) signaling. TAZ depletion in keratinocytes decreased EGFR signaling activation, which delays epidermal regeneration. Interestingly, TAZ stimulated the transcription of amphiregulin (AREG), a ligand of EGFR, through TEAD-mediated transcriptional activation. Together, these results show that TAZ stimulates EGFR signaling through AREG induction, suggesting that it plays an important role in epidermal regeneration.


Assuntos
Anfirregulina/genética , Epiderme/fisiologia , Regeneração , Transativadores/metabolismo , Transcrição Gênica , Raios Ultravioleta , Proteínas Adaptadoras de Transdução de Sinal , Anfirregulina/metabolismo , Animais , Proliferação de Células/efeitos da radiação , Epiderme/efeitos da radiação , Receptores ErbB/metabolismo , Deleção de Genes , Humanos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Ligantes , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regeneração/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Transcrição Gênica/efeitos da radiação
7.
FASEB J ; 33(5): 5914-5923, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30742777

RESUMO

In response to liver injury, the liver undergoes a regeneration process to retain its mass and function. However, the regeneration mechanism has not been fully clarified. This study investigated the role of transcriptional coactivator with PDZ-binding motif (TAZ), a Hippo-signaling effector, in liver regeneration. We observed that TAZ stimulates liver regeneration after liver injury. After partial hepatectomy (PHx) or carbon tetrachloride damage, TAZ was required for liver regeneration to increase hepatic cell proliferation and resist hepatic apoptosis, which were decreased in liver-specific TAZ knockout (LKO) mice. TAZ stimulated macrophage infiltration, resulting in IL-6 production, which induced liver regeneration. In LKO mice, IL-6-induced activation of signal transducer and activator of transcription 3, ERK, and PKB was decreased. We also observed that periductal fibrogenesis was significantly increased in LKO mice during liver regeneration after PHx, which was caused by increased hepatic apoptosis. Our results suggest that TAZ stimulates liver regeneration through IL-6-induced hepatocyte proliferation and inhibition of cell death after liver injury.-Kim, A. R., Park, J. I., Oh, H. T., Kim, K. M., Hwang, J.-H., Jeong, M. G., Kim, E.-H., Hwang, E. S., Hong, J.-H. TAZ stimulates liver regeneration through interleukin-6-induced hepatocyte proliferation and inhibition of cell death after liver injury.


Assuntos
Interleucina-6/metabolismo , Regeneração Hepática , Fígado/lesões , Transativadores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Alelos , Animais , Apoptose , Tetracloreto de Carbono , Morte Celular , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hepatectomia , Hepatócitos/citologia , Hepatócitos/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo
8.
Nat Commun ; 10(1): 421, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679431

RESUMO

Insulin regulates blood glucose levels by binding its receptor and stimulating downstream proteins through the insulin receptor substrate (IRS). Impaired insulin signalling leads to metabolic syndrome, but the regulation of this process is not well understood. Here, we describe a novel insulin signalling regulatory pathway involving TAZ. TAZ upregulates IRS1 and stimulates Akt- and Glut4-mediated glucose uptake in muscle cells. Muscle-specific TAZ-knockout mice shows significantly decreased Irs1 expression and insulin sensitivity. Furthermore, TAZ is required for Wnt signalling-induced Irs1 expression, as observed by decreased Irs1 expression and insulin sensitivity in muscle-specific APC- and TAZ-double-knockout mice. TAZ physically interacts with c-Jun and Tead4 to induce Irs1 transcription. Finally, statin administration decreases TAZ, IRS1 level and insulin sensitivity. However, in myoblasts, the statin-mediated decrease in insulin sensitivity is counteracted by the expression of a constitutively active TAZ mutant. These results suggest that TAZ is a novel insulin signalling activator that increases insulin sensitivity and couples Hippo/Wnt signalling and insulin sensitivity.


Assuntos
Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Aciltransferases , Animais , Glicemia , Linhagem Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Células HEK293 , Via de Sinalização Hippo , Humanos , Insulina/metabolismo , Camundongos , Camundongos Knockout , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Mutagênese Sítio-Dirigida , Mioblastos/metabolismo , Veículos Farmacêuticos/administração & dosagem , Sinvastatina/administração & dosagem , Sinvastatina/farmacologia , Fatores de Transcrição/genética , Regulação para Cima , Via de Sinalização Wnt
9.
Cancer Lett ; 410: 32-40, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28939028

RESUMO

Proto-oncogene tyrosine-protein kinase Src (cSRC) is involved in colorectal cancer (CRC) development and damage-induced intestinal regeneration, although the cellular mechanisms involved are poorly understood. Here, we report that transcriptional coactivator with PDZ binding domain (TAZ) is activated by cSRC, regulating CRC cell proliferation and tumor formation, where cSRC overexpression increases TAZ expression in CRC cells. In contrast, knockdown of cSRC decreases TAZ expression. Additionally, direct phosphorylation of TAZ at Tyr316 by cSRC stimulates nuclear localization and facilitates transcriptional enhancer factor TEF-3 (TEAD4)-mediated transcription. However, a TAZ phosphorylation mutant significantly decreased cell proliferation, wound healing, colony forming, and tumor formation. In a CRC mouse model, ApcMin/+, activated SRC expression was associated with increased TAZ expression in polyps and TAZ depletion decreased polyp formation. Moreover, intestinal TAZ knockout mice had intestinal regeneration defects following γ-irradiation. Finally, significant correspondence between SRC activation and TAZ overexpression was observed in CRC patients. These results suggest that TAZ is a critical factor for SRC-mediated intestinal tumor formation and regeneration.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenoma/enzimologia , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Neoplasias Colorretais/enzimologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Regeneração , Quinases da Família src/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Adenoma/genética , Adenoma/patologia , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ativação Enzimática , Feminino , Regulação Neoplásica da Expressão Gênica , Genes APC , Predisposição Genética para Doença , Células HCT116 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos Knockout , Camundongos Nus , Mutação , Fenótipo , Fosforilação , Proto-Oncogene Mas , Transdução de Sinais , Fatores de Tempo , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Quinases da Família src/genética
10.
Sci Rep ; 7(1): 3632, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28620202

RESUMO

The topographical environment, which mimics the stem cell niche, provides mechanical cues to regulate the differentiation of mesenchymal stem cells (MSC). Diverse topographical variations have been engineered to investigate cellular responses; however, the types of mechanical parameters that affect cells, and their underlying mechanisms remain largely unknown. In this study, we screened nanotopological pillars with size gradient to activate transcriptional coactivator with PDZ binding motif (TAZ), which stimulates osteogenesis of MSC. We observed that a nanotopological plate, 70 nm in diameter, significantly induces osteogenic differentiation with the activation of TAZ. TAZ activation via the nanotopological plate was mediated by actin polymerization and Rho signaling, as evidenced by the cytosolic localization of TAZ under F-actin or Rho kinase inhibitor. The FAK and MAPK pathways also play a role in TAZ activation by the nanotopological plate because the inhibitor of ERK and JNK blocked nanopattern plate induced osteogenic differentiation. Taken together, these results indicate that nanotopology regulates cell differentiation through TAZ activation.


Assuntos
Diferenciação Celular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Osteogênese/genética , Actinas/metabolismo , Biomarcadores , Células Cultivadas , Quinase 1 de Adesão Focal/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Modelos Biológicos , Nanotecnologia , Ligação Proteica , Multimerização Proteica , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional
11.
Biochem Biophys Res Commun ; 489(2): 142-148, 2017 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-28546002

RESUMO

Muscle weakness is one of the most common symptoms in aged individuals and increases risk of mortality. Thus, maintenance of muscle mass is important for inhibiting aging. In this study, we investigated the effect of catechins, polyphenol compounds in green tea, on muscle regeneration. We found that (-)-epicatechin gallate (ECG) and (-)-epigallocatechin-3-gallate (EGCG) activate satellite cells by induction of Myf5 transcription factors. For satellite cell activation, Akt kinase was significantly induced after ECG treatment and ECG-induced satellite cell activation was blocked in the presence of Akt inhibitor. ECG also promotes myogenic differentiation through the induction of myogenic markers, including Myogenin and Muscle creatine kinase (MCK), in satellite and C2C12 myoblast cells. Finally, EGCG administration to mice significantly increased muscle fiber size for regeneration. Taken together, the results suggest that catechins stimulate muscle stem cell activation and differentiation for muscle regeneration.


Assuntos
Catequina/farmacologia , Músculos/efeitos dos fármacos , Músculos/fisiologia , Fator Regulador Miogênico 5/biossíntese , Regeneração/efeitos dos fármacos , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Animais , Catequina/química , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Conformação Molecular , Músculos/citologia , Fator Regulador Miogênico 5/metabolismo , Relação Estrutura-Atividade
12.
Biochem Biophys Res Commun ; 486(2): 378-384, 2017 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-28315325

RESUMO

Muscle loss is a typical process of aging. Green tea consumption is known to slow down the progress of aging. Their underlying mechanisms, however, remain largely unknown. In this study, we investigated the effect of (-)-epigallocatechin-3-gallate (EGCG), a polyphenolic compound of green tea, on myogenic differentiation and found that EGCG significantly increases myogenic differentiation. After EGCG treatment, the expression of myogenic marker genes, such as myosin heavy chain, are increased through activation of TAZ, a transcriptional coactivator with a PDZ-binding motif. TAZ-knockdown does not stimulate EGCG-induced myogenic differentiation. EGCG facilitates the interaction between TAZ and MyoD, which stimulates MyoD-mediated gene transcription. EGCG induces nuclear localization of TAZ through the dephosphorylation of TAZ at its Ser89 residue, which relieves 14-3-3 binding in the cytosol. Interestingly, inactivation of Lats kinase is observed after EGCG treatment, which is responsible for the production of dephosphorylated TAZ. Together, these results suggest that EGCG induces myogenic differentiation through TAZ, suggesting that TAZ plays an important role in EGCG induced muscle regeneration.


Assuntos
Catequina/análogos & derivados , Diferenciação Celular/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Fatores de Transcrição/agonistas , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Aciltransferases , Animais , Catequina/farmacologia , Linhagem Celular , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteína MyoD/genética , Proteína MyoD/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Miogenina/genética , Miogenina/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais , Chá/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA