Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
PNAS Nexus ; 3(4): pgae150, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38681675

RESUMO

Mutations in the Trk-fused gene (TFG) cause hereditary motor and sensory neuropathy with proximal dominant involvement, which reportedly has high co-incidences with diabetes and dyslipidemia, suggesting critical roles of the TFG in metabolism as well. We found that TFG expression levels in white adipose tissues (WATs) were elevated in both genetically and diet-induced obese mice and that TFG deletion in preadipocytes from the stromal vascular fraction (SVF) markedly inhibited adipogenesis. To investigate its role in vivo, we generated tamoxifen-inducible adipocyte-specific TFG knockout (AiTFG KO) mice. While a marked down-regulation of the peroxisome proliferator-activated receptor gamma target, de novo lipogenesis (DNL), and mitochondria-related gene expressions were observed in subcutaneous WAT (scWAT) from AiTFG KO mice, these effects were blunted in SVF-derived adipocytes when the TFG was deleted after differentiation into adipocytes, implying cell nonautonomous effects. Intriguingly, expressions of thyroid hormone receptors, as well as carbohydrate responsive element-binding protein ß, which mediates the metabolic actions of thyroid hormone, were drastically down-regulated in scWAT from AiTFG KO mice. Reduced DNL and thermogenic gene expressions in AiTFG KO mice might be attributable to impaired thyroid hormone action in vivo. Finally, when adipocyte TFG was deleted in either the early or the late phase of high-fat diet feeding, the former brought about an impaired expansion of epididymal WAT, whereas the latter caused prominent adipocyte cell death. TFG deletion in adipocytes markedly exacerbated hepatic steatosis in both experimental settings. Collectively, these observations indicate that the TFG plays essential roles in maintaining normal adipocyte functions, including an enlargement of adipose tissue, thyroid hormone function, and thermogenic gene expressions, and in preserving hypertrophic adipocytes.

2.
Int J Mol Sci ; 24(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37958994

RESUMO

Citrus hassaku extract reportedly activates AMPK. Because this extract contains an abundance of auraptene, we investigated whether pure auraptene activates AMPK and inhibits proliferation using prostate cancer cell lines. Indeed, auraptene inhibited the proliferation and migration of LNCaP cells and induced phosphorylation of AMPK or its downstream ACC in LNCaP, PC3, and HEK-293 cells, but not in DU145 cells not expressing LKB1. In addition, the mTOR-S6K pathway, located downstream from activated AMPK, was also markedly suppressed by auraptene treatment. Importantly, it was shown that auraptene reduced androgen receptor (AR) and prostate-specific antigen (PSA) expressions at both the protein and the mRNA level. This auraptene-induced downregulation of PSA was partially but significantly reversed by treatment with AMPK siRNA or the AMPK inhibitor compound C, suggesting AMPK activation to, at least partially, be causative. Finally, in DU145 cells lacking the LKB1 gene, exogenously induced LKB1 expression restored AMPK phosphorylation by auraptene, indicating the essential role of LKB1. In summary, auraptene is a potent AMPK activator that acts by elevating the AMP/ATP ratio, thereby potentially suppressing prostate cancer progression, via at least three molecular mechanisms, including suppression of the mTOR-S6K pathway, reduced lipid synthesis, and AR downregulation caused by AMPK activation.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias da Próstata , Masculino , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Próstata/metabolismo , Células HEK293 , Quinases Proteína-Quinases Ativadas por AMP , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Proliferação de Células , Linhagem Celular Tumoral
3.
Sci Rep ; 12(1): 1966, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121777

RESUMO

Trk-fused gene (TFG) mutations have been identified in patients with several neurodegenerative diseases. In this study, we attempted to clarify the effects of TFG deletions in motor neurons and in muscle fibers, using tissue-specific TFG knockout (vMNTFG KO and MUSTFG KO) mice. vMNTFG KO, generated by crossing TFG floxed with VAChT-Cre, showed deterioration of motor function and muscle atrophy especially in slow-twitch soleus muscle, in line with the predominant Cre expression in slow-twitch fatigue-resistant (S) and fast-twitch fatigue-resistant (FR) motor neurons. Consistently, denervation of the neuromuscular junction (NMJ) was apparent in the soleus, but not in the extensor digitorum longus, muscle. Muscle TFG expressions were significantly downregulated in vMNTFG KO, presumably due to decreased muscle IGF-1 concentrations. However, interestingly, MUSTFG KO mice showed no apparent impairment of muscle movements, though a denervation marker, AChRγ, was elevated and Agrin-induced AChR clustering in C2C12 myotubes was inhibited. Our results clarify that loss of motor neuron TFG is sufficient for the occurrence of NMJ degeneration and muscle atrophy, though lack of muscle TFG may exert an additional effect. Reduced muscle TFG, also observed in aged mice, might be involved in age-related NMJ degeneration, and this issue merits further study.


Assuntos
Fator de Crescimento Insulin-Like I/genética , Doenças Neurodegenerativas/genética , Junção Neuromuscular/genética , Receptor trkA/genética , Animais , Humanos , Camundongos , Camundongos Knockout , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Doenças Neurodegenerativas/patologia , Junção Neuromuscular/patologia
4.
Sci Rep ; 11(1): 18581, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535740

RESUMO

Novel coronavirus disease 2019 (COVID-19) has emerged as a global pandemic with far-reaching societal impact. Here we demonstrate that Pin1 is a key cellular molecule necessary for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) propagation. In this study, siRNA-mediated silencing of Pin1 expression markedly suppressed the proliferation of SARS-CoV-2 in VeroE6/TMPRSS2 cells. In addition, several recently generated Pin1 inhibitors showed strong inhibitory effects on SARS-CoV-2 proliferation, measured by both viral mRNA and protein synthesis, and alleviated the cytopathic effect (CPE) on VeroE6/TMPRSS2 cells. One compound, termed H-77, was found to block SARS-CoV-2 proliferation at an EC50 below 5 µM regardless of whether it was added to the culture medium prior to or after SARS-CoV-2 infection. The inhibition of viral N protein mRNA synthesis by H-77 implies that the molecular mechanism underlying SARS-CoV-2 inhibition is likely to be associated with viral gene transcription or earlier steps. Another Pin1 inhibitor, all-trans retinoic acid (ATRA)-a commercially available drug used to treat acute promyelocytic leukemia (APL) and which both activates the retinoic acid receptor and inhibits the activity of Pin1-similarly reduced the proliferation of SARS-CoV-2. Taken together, the results indicate that Pin1 inhibitors could serve as potential therapeutic agents for COVID-19.


Assuntos
COVID-19/virologia , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , SARS-CoV-2/metabolismo , Replicação Viral/genética , Animais , COVID-19/genética , Chlorocebus aethiops , Peptidilprolil Isomerase de Interação com NIMA/genética , Pandemias , SARS-CoV-2/genética , Células Vero , Internalização do Vírus
5.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919842

RESUMO

Carnosic acid (CA), carnosol (CL) and rosmarinic acid (RA), components of the herb rosemary, reportedly exert favorable metabolic actions. This study showed that both CA and CL, but not RA, induce significant phosphorylation of AMP-dependent kinase (AMPK) and its downstream acetyl-CoA carboxylase 1 (ACC1) in HepG2 hepatoma cells. Glucose-6-phosphatase (G6PC) and phosphoenolpyruvate carboxykinase 1 (PCK1), rate-limiting enzymes of hepatic gluconeogenesis, are upregulated by forskolin stimulation, and this upregulation was suppressed when incubated with CA or CL. Similarly, a forskolin-induced increase in CRE transcriptional activity involved in G6PC and PCK1 regulations was also stymied when incubated with CA or CL. In addition, mRNA levels of ACC1, fatty acid synthase (FAS) and sterol regulatory element-binding protein 1c (SREBP-1c) were significantly reduced when incubated with CA or CL. Finally, it was shown that CA and CL suppressed cell proliferation and reduced cell viability, possibly as a result of AMPK activation. These findings raise the possibility that CA and CL exert a protective effect against diabetes and fatty liver disease, as well as subsequent cases of hepatoma.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Abietanos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Gluconeogênese/genética , Lipogênese/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Ácidos Graxos/biossíntese , Gluconeogênese/efeitos dos fármacos , Células HEK293 , Células Hep G2 , Humanos , Lipogênese/efeitos dos fármacos , Camundongos , Oxirredução , Fosforilação/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rosmarinus/química , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA