Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
2.
Genes Cells ; 23(4): 285-293, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29508494

RESUMO

Circadian rhythms are generated by the cyclic expression of several clock genes in mammals. The rhythmic expression of these genes is maintained by multiple transcriptional-translational feedback loops in addition to the posttranslational regulation of the clock proteins. Transcription of one of the key clock genes, Bmal1, which exhibits a nocturnal transcriptional rhythm in the suprachiasmatic nucleus of the mouse brain, is induced and repressed by RORs and REV-ERBs, respectively. Thus, the dynamics of the RORs and REV-ERBs expression, modification, subcellular localization and degradation of these transcriptional factors are critical for the transcriptional regulation of Bmal1. In this study, we found that the highly homologous N-terminal regions of REV-ERBα and REV-ERBß determined both their own CK1-catalyzed phosphorylation and the cytoplasmic accumulation of each hyperphosphorylated form. Of the homologous N-terminal regions, three serine-rich clusters in REV-ERBß are required for the phosphorylation and cytoplasmic localization. Our results indicate that the REV-ERBs phosphorylation by CK1 plays a key role in their subcellular localization, thereby controlling the timings of the transcriptional activation and inhibition of Bmal1.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulação da Expressão Gênica , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Animais , Ritmo Circadiano , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Fosforilação , Domínios Proteicos , Homologia de Sequência
3.
Sci Rep ; 7(1): 7812, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798316

RESUMO

Myocardial infarction (MI) is an ischaemic heart condition caused by the occlusion of coronary arteries. Following MI, lactic acid from anaerobic glycolysis increases and infiltrating immune cells produce severe inflammation, which leads to acidosis in the ischaemic heart. However, the physiological implication of this pH reduction remains largely unknown. T-cell death-associated gene 8 (TDAG8) is a proton-sensing G protein-coupled receptor found on cardiac macrophages that recognise increases in extracellular protons. We demonstrated that TDAG8 negatively regulates the transcription of the chemokine Ccl20. The infarcted hearts of TDAG8 KO mice showed an increase in CCL20 expression and the number of infiltrating IL-17A-producing γδT cells that express CCR6, a receptor for CCL20. Accordingly, excessive IL-17A production, which is linked to the functional deterioration after MI, was observed in MI-operated TDAG8 KO mice. The survival rate and cardiac function significantly decreased in TDAG8 KO mice compared with those in wild-type mice after MI. Thus, our results suggest that TDAG8 is a key regulator of MI and a potential therapeutic target.


Assuntos
Quimiocina CCL20/genética , Infarto do Miocárdio/genética , Animais , Quimiocina CCL20/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Interleucina-17/metabolismo , Linfócitos Intraepiteliais/imunologia , Camundongos , Camundongos Knockout , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/metabolismo , Receptores CCR6/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Análise de Sobrevida , Transcrição Gênica
4.
J Am Soc Nephrol ; 27(7): 1925-32, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26609120

RESUMO

Mitochondrial dysfunction causes increased oxidative stress and depletion of ATP, which are involved in the etiology of a variety of renal diseases, such as CKD, AKI, and steroid-resistant nephrotic syndrome. Antioxidant therapies are being investigated, but clinical outcomes have yet to be determined. Recently, we reported that a newly synthesized indole derivative, mitochonic acid 5 (MA-5), increases cellular ATP level and survival of fibroblasts from patients with mitochondrial disease. MA-5 modulates mitochondrial ATP synthesis independently of oxidative phosphorylation and the electron transport chain. Here, we further investigated the mechanism of action for MA-5. Administration of MA-5 to an ischemia-reperfusion injury model and a cisplatin-induced nephropathy model improved renal function. In in vitro bioenergetic studies, MA-5 facilitated ATP production and reduced the level of mitochondrial reactive oxygen species (ROS) without affecting activity of mitochondrial complexes I-IV. Additional assays revealed that MA-5 targets the mitochondrial protein mitofilin at the crista junction of the inner membrane. In Hep3B cells, overexpression of mitofilin increased the basal ATP level, and treatment with MA-5 amplified this effect. In a unique mitochondrial disease model (Mitomice with mitochondrial DNA deletion that mimics typical human mitochondrial disease phenotype), MA-5 improved the reduced cardiac and renal mitochondrial respiration and seemed to prolong survival, although statistical analysis of survival times could not be conducted. These results suggest that MA-5 functions in a manner differing from that of antioxidant therapy and could be a novel therapeutic drug for the treatment of cardiac and renal diseases associated with mitochondrial dysfunction.


Assuntos
Ácidos Indolacéticos/farmacologia , Túbulos Renais/citologia , Mitocôndrias/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Fenilbutiratos/farmacologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Biochem Biophys Res Commun ; 461(2): 307-13, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25881508

RESUMO

G protein-coupled receptor kinases (GRKs) comprise a family of seven serine/threonine kinases that phosphorylate agonist-activated G protein-coupled receptors (GPCRs). It has recently been reported that GRKs regulate GPCR-independent signaling through the phosphorylation of intracellular proteins. To date, several intracellular substrates for GRK2 and GRK5 have been reported. However, those for GRK6 are poorly understood. Here we identified IκBα, a negative regulator of NF-κB signaling, as a substrate for GRK6. GRK6 directly phosphorylated IκBα at Ser(32)/Ser(36), and the kinase activity of GRK6 was required for the promotion of NF-κB signaling after TNF-α stimulation. Knockout of GRK6 in peritoneal macrophages remarkably attenuated the transcription of inflammatory genes after TNF-α stimulation. In addition, we developed a bioluminescence resonance energy transfer (BRET) probe to monitor GRK6 activity. Using this probe, we revealed that the conformational change of GRK6 was induced by TNF-α. In summary, our study demonstrates that TNF-α induces GRK6 activation, and GRK6 promotes inflammatory responses through the phosphorylation of IκBα.


Assuntos
Quinases de Receptores Acoplados a Proteína G/imunologia , Proteínas I-kappa B/imunologia , Inflamação/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Células Cultivadas , Quinases de Receptores Acoplados a Proteína G/química , Quinases de Receptores Acoplados a Proteína G/genética , Quinases de Receptores Acoplados a Proteína G/metabolismo , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Proteínas I-kappa B/química , Proteínas I-kappa B/metabolismo , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Inibidor de NF-kappaB alfa , NF-kappa B/imunologia , Células NIH 3T3 , Fosforilação , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA