Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Adv Sci (Weinh) ; 10(27): e2301930, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37485618

RESUMO

Detecting early cancer through liquid biopsy is challenging due to the lack of specific biomarkers for early lesions and potentially low levels of these markers. The current study systematically develops an extracellular-vesicle (EV)-based test for early detection, specifically focusing on high-grade serous ovarian carcinoma (HGSOC). The marker selection is based on emerging insights into HGSOC pathogenesis, notably that it arises from precursor lesions within the fallopian tube. This work thus establishes murine fallopian tube (mFT) cells with oncogenic mutations and performs proteomic analyses on mFT-derived EVs. The identified markers are then evaluated with an orthotopic HGSOC animal model. In serially-drawn blood of tumor-bearing mice, mFT-EV markers increase with tumor initiation, supporting their potential use in early cancer detection. A pilot clinical study (n = 51) further narrows EV markers to five candidates, EpCAM, CD24, VCAN, HE4, and TNC. The combined expression of these markers distinguishes HGSOC from non-cancer with 89% sensitivity and 93% specificity. The same markers are also effective in classifying three groups (non-cancer, early-stage HGSOC, and late-stage HGSOC). The developed approach, for the first time inaugurated in fallopian tube-derived EVs, could be a minimally invasive tool to monitor women at high risk of ovarian cancer for timely intervention.


Assuntos
Vesículas Extracelulares , Neoplasias Ovarianas , Humanos , Feminino , Camundongos , Animais , Proteômica , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Biomarcadores/metabolismo , Tubas Uterinas/metabolismo , Tubas Uterinas/patologia , Vesículas Extracelulares/metabolismo
2.
bioRxiv ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36711872

RESUMO

Ovarian cancer is a heterogeneous group of tumors in both cell type and natural history. While outcomes are generally favorable when detected early, the most common subtype, high-grade serous carcinoma (HGSOC), typically presents at an advanced stage and portends less favorable prognoses. Its aggressive nature has thwarted early detection efforts through conventional detection methods such as serum CA125 and ultrasound screening and thus inspired the investigation of novel biomarkers. Here, we report the systematic development of an extracellular-vesicle (EV)-based test to detect early-stage HGSOC. Our study is based on emerging insights into HGSOC biology, notably that it arises from precursor lesions within the fallopian tube before traveling to ovarian and/or peritoneal surfaces. To identify HGSOC marker candidates, we established murine fallopian tube (mFT) cells with oncogenic mutations in Brca1/2, Tp53 , and Pten genes, and performed proteomic analyses on mFT EVs. The identified markers were then evaluated with an orthotopic HGSOC animal model. In serially-drawn blood samples of tumor-bearing mice, mFT-EV markers increased with tumor initiation, supporting their potential use in early cancer detection. A pilot human clinical study ( n = 51) further narrowed EV markers to five candidates, EpCAM, CD24, VCAN, HE4, and TNC. Combined expression of these markers achieved high OvCa diagnostic accuracy (cancer vs. non-cancer) with a sensitivity of 0.89 and specificity of 0.93. The same five markers were also effective in a three-group classification: non-cancer, early-stage (I & II) HGSOC, and late-stage (III & IV) HGSOC. In particular, they differentiated early-stage HGSOC from the rest with a specificity of 0.91. Minimally invasive and repeatable, this EV-based testing could be a versatile and serial tool for informing patient care and monitoring women at high risk for ovarian cancer.

3.
Cancer Med ; 8(15): 6709-6716, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31503420

RESUMO

BACKGROUND: MicroRNAs have recently emerged as promising circulating biomarkers in diverse cancer types, including ovarian cancer. We utilized conditional, doxycycline-induced fallopian tube (FT)-derived cancer models to identify changes in miRNA expression in tumors and plasma, and further validated the murine findings in high-grade ovarian cancer patient samples. METHODS: We analyzed 566 biologically informative miRNAs in doxycycline-induced FT and metastatic tumors as well as plasma samples derived from murine models bearing inactivation of Brca, Tp53, and Pten genes. We identified miRNAs that showed a consistent pattern of dysregulated expression and validated our results in human patient serum samples. RESULTS: We identified six miRNAs that were significantly dysregulated in doxycycline-induced FTs (P < .05) and 130 miRNAs differentially regulated in metastases compared to normal fallopian tissues (P < .05). Furthermore, we validated miR-21a-5p, miR-146a-5p, and miR-126a-3p as dysregulated in both murine doxycycline-induced FT and metastatic tumors, as well as in murine plasma and patient serum samples. CONCLUSIONS: In summary, we identified changes in miRNA expression that potentially accompany tumor development in murine models driven by commonly found genetic alterations in cancer patients. Further studies are required to test both the function of these miRNAs in driving the disease and their utility as potential biomarkers for diagnosis and/or disease progression.


Assuntos
Doxiciclina/efeitos adversos , Tubas Uterinas/patologia , Perfilação da Expressão Gênica/métodos , MicroRNAs/genética , Neoplasias Ovarianas/genética , Animais , Biomarcadores Tumorais/genética , Tubas Uterinas/química , Tubas Uterinas/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Pessoa de Meia-Idade , Transplante de Neoplasias , Neoplasias Ovarianas/patologia
4.
Front Oncol ; 9: 353, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134152

RESUMO

Talazoparib, a potent PARP inhibitor, induces synthetic lethality in BRCA-deficient cancers making it an attractive candidate for ovarian cancer treatment. However, its potency lends itself to side effects associated more closely with traditional chemotherapeutics than other clinically approved PARP inhbitors. We sought to formulate Talazoparib in a nanoparticle delivery system, which allows the drug to be administered intraperitoneally. This was done to specifically target peritoneal dissemination of late stage metastatic ovarian cancer and increase talazoparib's therapeutic efficacy while minimizing toxic side effects. NanoTalazoparib was developed and characterized with regard to its size, loading, and surface charge. Talazoparib and NanoTalazoparib were tested on a panel of murine and human BRCA cell lines and the dose response was compared to Olaparib's, the currently used PARP inhibitor. Therapeutic efficacy was tested in vivo in a Brca peritoneal cancer model that mimics late stage disseminated disease. NanoTalazoparib has a diameter of about 70 nm with a neutral surface charge and ~75% encapsulation efficiency, which slowly releases the drug over several hours. Dose response analysis indicated that the murine cell lines with conditional BRCA1/2, PTEN, and TP53 deletions had the lowest IC50s. NanoTalazoparib administered on a schedule of three doses weekly slowed disease progression and resulted in significantly less mice with ascites at the end point compared to controls. These results indicate that the slow release nanoformulation, NanoTalazoparib, effectively delivers PARP inhibitor therapy to the peritoneal cavity for disseminated cancer treatment. The ability to decrease ascites formation with the introduction of intraperitoneal NanoTalazoparib suggests this treatment may be an effective way to treat ovarian cancer-associated ascites and slow disease progression.

5.
Int J Nanomedicine ; 13: 8063-8074, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555227

RESUMO

BACKGROUND: PARP inhibitors, such as Olaparib, have advanced the treatment of ovarian cancer by providing patients with an effective and molecularly-targeted maintenance therapy. However, all orally-administered drugs, including Olaparib, must undergo first-pass metabolism. In contrast, a nanoparticle delivery system has the advantage of administering Olaparib directly into the peritoneal cavity for local treatment. Consequently, we sought to optimize the sustained-release formulation NanoOlaparib, previously deemed effective as an intravenous solid tumor treatment, for the local treatment of disseminated disease via intraperitoneal (i.p.) therapy. METHODS: The tumor cell line 404, which was derived from a Brca2 -/-, Tp53 -/-, Pten -/- genetically engineered mouse model, exhibited high sensitivity to Olaparib in vitro. It was chosen for use in developing an i.p. spread xenograft for testing nanotherapy efficacy in vivo. NanoOlaparib as a monotherapy or in combination with cisplatin was compared to oral Olaparib alone or in combination using two different dose schedules. A pilot biodistribution study was performed to determine drug accumulation in various organs following i.p. administration. RESULTS: Daily administration of NanoOlaparib reduced tumor growth and decreased the variability of the treatment response observed with daily oral Olaparib administration. However, systemic toxicity was observed in both the NanoOlaparib and vehicle (empty nanoparticle) treated groups. Scaling back the administration to twice weekly was well tolerated up to 100 mg/kg but reduced the effect on tumor growth. Biodistribution profiles indicated that NanoOlaparib began accumulating in tissues within an hour of administration and persisted for at least 72 hours after a single dose, exiting the peritoneal cavity faster than expected. CONCLUSION: NanoOlaparib must be modified for use against disseminated disease. Future avenues to develop NanoOlaparib as an i.p. therapy include a modified surface-coating to retain it in the peritoneal cavity and prevent entry into systemic circulation, in addition to targeting moieties for localization in tumor cells.


Assuntos
Antineoplásicos/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Nanopartículas/administração & dosagem , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Peritoneais/tratamento farmacológico , Ftalazinas/administração & dosagem , Piperazinas/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Proteína BRCA2/fisiologia , Feminino , Humanos , Injeções Intraperitoneais , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Terapia de Alvo Molecular , Nanopartículas/química , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , PTEN Fosfo-Hidrolase/fisiologia , Neoplasias Peritoneais/metabolismo , Neoplasias Peritoneais/secundário , Ftalazinas/farmacocinética , Ftalazinas/farmacologia , Piperazinas/farmacocinética , Piperazinas/farmacologia , Distribuição Tecidual , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/fisiologia
6.
Clin Cancer Res ; 24(6): 1389-1401, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29263182

RESUMO

Purpose: A major challenge in platinum-based cancer therapy is the clinical management of chemoresistant tumors, which have a largely unknown pathogenesis at the level of epigenetic regulation.Experimental Design: We evaluated the potential of using global loss of 5-hydroxymethylcytosine (5-hmC) levels as a novel diagnostic and prognostic epigenetic marker to better assess platinum-based chemotherapy response and clinical outcome in high-grade serous tumors (HGSOC), the most common and deadliest subtype of ovarian cancer. Furthermore, we identified a targetable pathway to reverse these epigenetic changes, both genetically and pharmacologically.Results: This study shows that decreased 5-hmC levels are an epigenetic hallmark for malignancy and tumor progression in HGSOC. In addition, global 5-hmC loss is associated with a decreased response to platinum-based chemotherapy, shorter time to relapse, and poor overall survival in patients newly diagnosed with HGSOC. Interestingly, the rescue of 5-hmC loss restores sensitivity to platinum chemotherapy in vitro and in vivo, decreases the percentage of tumor cells with cancer stem cell markers, and increases overall survival in an aggressive animal model of platinum-resistant disease.Conclusions: Consequently, a global analysis of patient 5-hmC levels should be included in future clinical trials, which use pretreatment with epigenetic adjuvants to elevate 5-hmC levels and improve the efficacy of current chemotherapies. Identifying prognostic epigenetic markers and altering chemotherapeutic regimens to incorporate DNMTi pretreatment in tumors with low 5-hmC levels could have important clinical implications for newly diagnosed HGSOC disease. Clin Cancer Res; 24(6); 1389-401. ©2017 AACR.


Assuntos
5-Metilcitosina/análogos & derivados , Reprogramação Celular/genética , Cistadenocarcinoma Seroso/etiologia , Cistadenocarcinoma Seroso/metabolismo , Epigênese Genética , Neoplasias Ovarianas/etiologia , Neoplasias Ovarianas/metabolismo , 5-Metilcitosina/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada , Cistadenocarcinoma Seroso/mortalidade , Cistadenocarcinoma Seroso/patologia , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Gradação de Tumores , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Prognóstico , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Recidiva , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Transl Cancer Res ; 4(1): 14-28, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26114093

RESUMO

The complexity and heterogeneity of ovarian cancer cases are difficult to reproduce in in vitro studies, which cannot adequately elucidate the molecular events involved in tumor initiation and disease metastasis. It has now become clear that, although the multiple histological subtypes of ovarian cancer are being treated with similar surgical and therapeutic approaches, they are in fact characterized by distinct phenotypes, cell of origin, and underlying key genetic and genomic alterations. Consequently, the development of more personalized treatment methodologies, which are aimed at improving patient care and prognosis, will greatly benefit from a better understanding of the key differences between various subtypes. To accomplish this, animal models of all histotypes need to be generated in order to provide accurate in vivo platforms for research and the testing of targeted treatments and immune therapies. Both genetically engineered mouse models (GEMMs) and xenograft models have the ability to further our understanding of key mechanisms facilitating tumorigenesis, and at the same time offer insight into enhanced imaging and treatment modalities. While genetic models may be better suited to examine oncogenic functions and interactions during tumorigenesis, patient-derived xenografts (PDXs) are likely a superior model to assess drug efficacy, especially in concurrent clinical trials, due to their similarity to the tumors from which they are derived. Genetic and avatar models possess great clinical utility and have both benefits and limitations. Additionally, the laying hen model, which spontaneously develops ovarian tumors, has inherent advantages for the study of epithelial ovarian cancer (EOC) and recent work champions this model especially when assessing chemoprevention strategies. While high-grade ovarian serous tumors are the most prevalent form of EOC, rarer ovarian cancer variants, such as small cell ovarian carcinoma of the hypercalcemic type and transitional cell carcinoma, or non-epithelial tumors, including germ cell tumors, will also benefit from the generation of improved models to advance our understanding of tumorigenic mechanisms and the development of selective therapeutic options.

8.
Front Oncol ; 4: 322, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25478323

RESUMO

The majority of high-grade serous ovarian carcinoma cases are detected in advanced stages when treatment options are limited. Surgery is less effective at eradicating the disease when it is widespread, resulting in high rates of disease relapse and chemoresistance. Current screening techniques are ineffective for early tumor detection and consequently, BRCA mutations carriers, with an increased risk for developing high-grade serous ovarian cancer, elect to undergo risk-reducing surgery. While prophylactic surgery is associated with a significant reduction in the risk of cancer development, it also results in surgical menopause and significant adverse side effects. The development of efficient early-stage screening protocols and imaging technologies is critical to improving the outcome and quality of life for current patients and women at increased risk. In addition, more accurate animal models are necessary in order to provide relevant in vivo testing systems and advance our understanding of the disease origin and progression. Moreover, both genetically engineered and tumor xenograft animal models enable the preclinical testing of novel imaging techniques and molecularly targeted therapies as they become available. Recent advances in xenograft technologies have made possible the creation of avatar mice, personalized tumorgrafts, which can be used as therapy testing surrogates for individual patients prior to or during treatment. High-grade serous ovarian cancer may be an ideal candidate for use with avatar models based on key characteristics of the tumorgraft platform. This review explores multiple strategies, including novel imaging and screening technologies in both patients and animal models, aimed at detecting cancer in the early-stages and improving the disease prognosis.

9.
Cancer Cell ; 24(6): 751-65, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24332043

RESUMO

High-grade serous ovarian carcinoma presents significant clinical and therapeutic challenges. Although the traditional model of carcinogenesis has focused on the ovary as a tumor initiation site, recent studies suggest that there may be additional sites of origin outside the ovary, namely the secretory cells of the fallopian tube. Our study demonstrates that high-grade serous tumors can originate in fallopian tubal secretory epithelial cells and also establishes serous tubal intraepithelial carcinoma as the precursor lesion to high-grade serous ovarian and peritoneal carcinomas in animal models targeting the Brca, Tp53, and Pten genes. These findings offer an avenue to address clinically important questions that are critical for cancer prevention and early detection in women carrying BRCA1 and BRCA2 mutations.


Assuntos
Transformação Celular Neoplásica , Cistadenocarcinoma Seroso/etiologia , Neoplasias das Tubas Uterinas/patologia , Genes BRCA1 , Genes BRCA2 , Neoplasias Ovarianas/etiologia , Lesões Pré-Cancerosas/patologia , Animais , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Epitélio/patologia , Feminino , Genes p53 , Integrases/genética , Camundongos , Camundongos Endogâmicos C57BL , Gradação de Tumores , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Fator de Transcrição PAX8 , PTEN Fosfo-Hidrolase/genética , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA