Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891908

RESUMO

Chronic inflammation causes muscle wasting. Because most inflammatory cytokine signals are mediated via TGF-ß-activated kinase-1 (TAK1) activation, inflammatory cytokine-induced muscle wasting may be ameliorated by the inhibition of TAK1 activity. The present study was undertaken to clarify whether TAK1 inhibition can ameliorate inflammation-induced muscle wasting. SKG/Jcl mice as an autoimmune arthritis animal model were treated with a small amount of mannan as an adjuvant to enhance the production of TNF-α and IL-1ß. The increase in these inflammatory cytokines caused a reduction in muscle mass and strength along with an induction of arthritis in SKG/Jcl mice. Those changes in muscle fibers were mediated via the phosphorylation of TAK1, which activated the downstream signaling cascade via NF-κB, p38 MAPK, and ERK pathways, resulting in an increase in myostatin expression. Myostatin then reduced the expression of muscle proteins not only via a reduction in MyoD1 expression but also via an enhancement of Atrogin-1 and Murf1 expression. TAK1 inhibitor, LL-Z1640-2, prevented all the cytokine-induced changes in muscle wasting. Thus, TAK1 inhibition can be a new therapeutic target of not only joint destruction but also muscle wasting induced by inflammatory cytokines.


Assuntos
Citocinas , MAP Quinase Quinase Quinases , Atrofia Muscular , Animais , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/antagonistas & inibidores , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/tratamento farmacológico , Camundongos , Citocinas/metabolismo , Debilidade Muscular/metabolismo , Debilidade Muscular/tratamento farmacológico , Miostatina/metabolismo , Miostatina/antagonistas & inibidores , Proteínas Musculares/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , NF-kappa B/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Inflamação/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Modelos Animais de Doenças , Interleucina-1beta/metabolismo , Fosforilação/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/efeitos dos fármacos , Zearalenona/farmacologia , Zearalenona/análogos & derivados
2.
Nat Commun ; 13(1): 7194, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36424386

RESUMO

Exercise results in mechanical loading of the bone and stimulates energy expenditure in the adipose tissue. It is therefore likely that the bone secretes factors to communicate with adipose tissue in response to mechanical loading. Interleukin (IL)-11 is known to be expressed in the bone, it is upregulated by mechanical loading, enhances osteogenesis and suppresses adipogenesis. Here, we show that systemic IL-11 deletion (IL-11-/-) results in reduced bone mass, suppressed bone formation response to mechanical loading, enhanced expression of Wnt inhibitors, and suppressed Wnt signaling. At the same time, the enhancement of bone resorption by mechanical unloading was unaffected. Unexpectedly, IL-11-/- mice have increased systemic adiposity and glucose intolerance. Osteoblast/osteocyte-specific IL-11 deletion in osteocalcin-Cre;IL-11fl/fl mice have reduced serum IL-11 levels, blunted bone formation under mechanical loading, and increased systemic adiposity similar to IL-11-/- mice. Adipocyte-specific IL-11 deletion in adiponectin-Cre;IL-11fl/fl did not exhibit any abnormalities. We demonstrate that osteoblast/osteocyte-derived IL-11 controls both osteogenesis and systemic adiposity in response to mechanical loading, an important insight for our understanding of osteoporosis and metabolic syndromes.


Assuntos
Interleucina-11 , Osteócitos , Osteogênese , Animais , Camundongos , Adipogenia , Interleucina-11/genética , Obesidade , Osteoblastos , Camundongos Knockout
3.
J Med Invest ; 69(3.4): 287-293, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36244782

RESUMO

Objective : To examine diagnostic performance of corticotropin-releasing hormone (CRH) test combined with baseline dehydroepiandrosterone sulfate (DHEA-S) in patients with a suspect of central adrenal insufficiency. Methods : Patients (n=215) requiring daily or intermittent hydrocortisone replacement, or no replacement were retrospectively checked with their peak cortisol after CRH test and baseline DHEA-S. Results :  None of 106 patients with the peak cortisol ≥ 17.5 µg / dL after CRH test required replacement, and all 64 patients with the peak cortisol < 10.0 µg / dL required daily replacement. Among 8 patients with 10.0 µg / dL ≤ the peak cortisol < 17.5 µg / dL and baseline DHEA-S below the reference range, 6 patients required daily replacement and 1 patient was under intermittent replacement. Among 37 patients with 10.0 µg / dL ≤ the peak cortisol < 17.5 µg / dL and baseline DHEA-S within the reference range, 10 and 6 patients were under intermittent and daily replacement, respectively. Conclusions : No patients with the peak cortisol ≥ 17.5 µg / dL required hydrocortisone replacement, and all patients with the peak cortisol below 10.0 µg / dL required daily replacement. Careful clinical evaluation was required to determine requirement for replacement in patients with 10.0 µg / dL ≤ the peak cortisol < 17.5 µg / dL even in combination with baseline DHEA-S. J. Med. Invest. 69 : 287-293, August, 2022.


Assuntos
Insuficiência Adrenal , Hidrocortisona , Insuficiência Adrenal/diagnóstico , Insuficiência Adrenal/tratamento farmacológico , Hormônio Adrenocorticotrópico , Algoritmos , Hormônio Liberador da Corticotropina , Sulfato de Desidroepiandrosterona , Humanos , Estudos Retrospectivos
4.
Biochem Biophys Rep ; 27: 101107, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34458594

RESUMO

Fibroblast growth factor (FGF) 23 produced by the bone is the principal hormone to regulate serum phosphate level. Serum FGF23 needs to be tightly regulated to maintain serum phosphate in a narrow range. Thus, we hypothesized that the bone has some phosphate-sensing mechanism to regulate the production of FGF23. Previously we showed that extracellular phosphate induces the phosphorylation of FGF receptor 1 (FGFR1) and FGFR1 signaling regulates the expression of Galnt3, whose product works to increase FGF23 production in vitro. In this study, we show the significance of FGFR1 in the regulated FGF23 production and serum phosphate level in vivo. We generated late-osteoblast/osteocyte-specific Fgfr1-knockout mice (Fgfr1 fl/fl ; Ocn Cre/+ ) by crossing the Ocn-Cre and the floxed Fgfr1 mouse lines. We evaluated serum phosphate and FGF23 levels, the expression of Galnt3 in the bone, the body weight and life span. A selective ablation of Fgfr1 aborted the increase of serum active full-length FGF23 and the enhanced expression of Galnt3 in the bone by a high phosphate diet. These mice showed more pronounced hyperphosphatemia compared with control mice. In addition, these mice fed with a control diet showed body weight loss after 23 weeks of age and shorter life span. These results reveal a novel significance of FGFR1 signaling in the phosphate metabolism and normal life span.

5.
JBMR Plus ; 3(7): e10182, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31372589

RESUMO

Activating mutations of calcium-sensing receptor (CaSR) cause autosomal dominant hypocalcemia type 1 (ADH1). Patients with ADH1 exhibit similar features to patients with hypoparathyroidism, including reduced serum parathyroid hormone (PTH) and Ca with low bone turnover. Although persistent suppression of bone turnover may increase bone fragility, bone strength in ADH1 patients has been unclear. We created knock-in mice harboring the A843E activating mutation of CaSR, mimicking severe features of ADH1 patients. The severe form of ADH1 model mice showed smaller body and bone size with lower bone mineral density (BMD) and cortical area of the femur compared with age-matched wild-type (WT) mice. Bone strength in the femur was lower in ADH1 mice even after correction by bone geometry and/or BMD. Microcracks were markedly increased in ADH1 mice, but were rarely detected in WT mice. There was a negative correlation between bone strength corrected by bone geometry and/or BMD and microcrack number or density in ADH1 and WT mice. Among ADH1 mice, negative correlation was still observed between bone strength and microcrack number or density. Microcracks increased with age in ADH1 mice, and were negatively correlated with bone strength. Treatment with PTH(1-34) or a calcilytic, JTT-305, increased bone turnover, reduced microcracks, and increased bone strength to similar levels to those in WT mice. The increase in microcracks was associated with a reduction in bone strength in ADH1 mice, and aging aggravates these changes. These results demonstrate that activating mutation of CaSR causes reduction in PTH secretion with suppressed bone turnover, that reduced bone turnover is associated with an age-dependent increase in microcracks with a reduction in bone strength, and that both PTH(1-34) and calcilytic ameliorate all these changes in bone turnover and strength. It is suggested that fracture susceptibility may be increased in severe types of ADH1 patients especially in the elderly. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

6.
J Bone Miner Res ; 30(11): 1980-93, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25967373

RESUMO

Activating mutations of calcium-sensing receptor (CaSR) cause autosomal dominant hypocalcemia (ADH). ADH patients develop hypocalcemia, hyperphosphatemia, and hypercalciuria, similar to the clinical features of hypoparathyroidism. The current treatment of ADH is similar to the other forms of hypoparathyroidism, using active vitamin D3 or parathyroid hormone (PTH). However, these treatments aggravate hypercalciuria and renal calcification. Thus, new therapeutic strategies for ADH are needed. Calcilytics are allosteric antagonists of CaSR, and may be effective for the treatment of ADH caused by activating mutations of CaSR. In order to examine the effect of calcilytic JTT-305/MK-5442 on CaSR harboring activating mutations in the extracellular and transmembrane domains in vitro, we first transfected a mutated CaSR gene into HEK cells. JTT-305/MK-5442 suppressed the hypersensitivity to extracellular Ca(2+) of HEK cells transfected with the CaSR gene with activating mutations in the extracellular and transmembrane domains. We then selected two activating mutations locating in the extracellular (C129S) and transmembrane (A843E) domains, and generated two strains of CaSR knock-in mice to build an ADH mouse model. Both mutant mice mimicked almost all the clinical features of human ADH. JTT-305/MK-5442 treatment in vivo increased urinary cAMP excretion, improved serum and urinary calcium and phosphate levels by stimulating endogenous PTH secretion, and prevented renal calcification. In contrast, PTH(1-34) treatment normalized serum calcium and phosphate but could not reduce hypercalciuria or renal calcification. CaSR knock-in mice exhibited low bone turnover due to the deficiency of PTH, and JTT-305/MK-5442 as well as PTH(1-34) increased bone turnover and bone mineral density (BMD) in these mice. These results demonstrate that calcilytics can reverse almost all the phenotypes of ADH including hypercalciuria and renal calcification, and suggest that calcilytics can become a novel therapeutic agent for ADH.


Assuntos
Benzoatos/uso terapêutico , Hipercalciúria/tratamento farmacológico , Hipercalciúria/genética , Hipocalcemia/tratamento farmacológico , Hipocalcemia/genética , Hipoparatireoidismo/congênito , Mutação/genética , Propanolaminas/uso terapêutico , Receptores de Detecção de Cálcio/genética , Animais , Sequência de Bases , Benzoatos/farmacologia , Remodelação Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Cálcio/metabolismo , Modelos Animais de Doenças , Fator de Crescimento de Fibroblastos 23 , Técnicas de Introdução de Genes , Células HEK293 , Humanos , Hipercalciúria/patologia , Hipercalciúria/fisiopatologia , Hipocalcemia/patologia , Hipocalcemia/fisiopatologia , Hipoparatireoidismo/tratamento farmacológico , Hipoparatireoidismo/genética , Hipoparatireoidismo/patologia , Hipoparatireoidismo/fisiopatologia , Camundongos , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Fenótipo , Propanolaminas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA