Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Lab Chip ; 22(4): 717-726, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35059696

RESUMO

Microfluidic paper-based analytical devices (µPADs) have attracted great attention as potential candidates for point-of-care testing (POCT). Nevertheless, only a limited number of µPADs expected to satisfy the standard of Clinical Laboratory Improvement Amendments (CLIA) waived tests as issued by the US Food and Drug Administration (FDA) have been reported. This work introduces a "traffic light type µPAD", enabling highly intuitive semi-quantitative equipment-free naked-eye readout with no need for calibration, subjective interpretation or calculation. Assay results are displayed as traffic light colours reporting 5 analyte concentration levels (green/green & yellow/yellow/yellow & red/red). The device has been designed to never display all three colours simultaneously, eliminating any risk for misinterpretation. The mechanism relies on the modulation of sample flow through a network of paperfluidic channels modified with a hydrophobic to hydrophilic phase-switching substance responsive to H2O2. User operation is limited to sample application, followed by observing a clear and time-independent traffic light signal after approximately 10-30 min. Multiple factors influencing the H2O2 concentration-dependent appearance of a specific traffic light signal were studied. Making use of the possibilities for customising the concentration threshold levels for traffic light colour appearance, quantification of glucose at 5 levels in a clinically relevant concentration range was demonstrated in artificial urine as a model proof-of-concept. This platform is expected to offer the possibility for the future detection of other important metabolites.


Assuntos
Técnicas Analíticas Microfluídicas , Papel , Peróxido de Hidrogênio , Dispositivos Lab-On-A-Chip , Testes Imediatos
2.
Anal Bioanal Chem ; 414(1): 691-701, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34657964

RESUMO

This manuscript reports on a simple paper-based bienzymatic colorimetric assay for sarcosine as an important urinary biomarker of prostate cancer. All required assay reagents are pre-deposited on hydrophilic filter paper spots surrounded by a hydrophobic barrier. Sarcosine in the sample solution is selectively oxidized in the presence of sarcosine oxidase (SOx), resulting in the formation of hydrogen peroxide, which is subsequently detected through the horseradish peroxidase (HRP)-catalyzed conversion of the colorless indicator 3,3',5,5'-tetramethylbenzidine (TMB) into its blue-colored oxidation product. By the modification of the paper with positively charged poly(allylamine hydrochloride) (PAH), a linear response to sarcosine between 0 and 10 µM and a significant lowering of the limit of detection (LOD) (0.6 µM) compared to the unmodified paper substrate (12.6 µM) has been achieved. The improvement of the LOD was attributed to the fact that the presence of the polymer limits the enzyme-driven colorimetric reaction to the surface of the paper substrate, resulting in stronger color development. In experiments in artificial urine matrix, the bicarbonate anion was identified as an inhibitor of the colorimetric reaction. This inhibition was successfully eliminated through on-device sample pH adjustments with pH-buffer components pre-deposited onto assay devices. The LOD for sarcosine achieved in artificial urine matrix (2.5 µM) is below the 5 µM threshold value for this urinary biomarker required for diagnostic purposes. Finally, good selectivity over all 20 natural amino acids and satisfactory long-term storage stability of reagent-modified paper substrates at - 20 °C for a period of 50 days were confirmed.


Assuntos
Colorimetria , Sarcosina , Colorimetria/métodos , Peroxidase do Rábano Silvestre , Humanos , Peróxido de Hidrogênio , Limite de Detecção , Masculino , Sarcosina Oxidase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA