Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
FASEB J ; 38(1): e23392, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38153675

RESUMO

Aerobic and resistance exercise (RE) induce distinct molecular responses. One hypothesis is that these responses are antagonistic and unfavorable for the anabolic response to RE when concurrent exercise is performed. This thesis may also depend on the participants' training status and concurrent exercise order. We measured free-living myofibrillar protein synthesis (MyoPS) rates and associated molecular responses to resistance-only and concurrent exercise (with different exercise orders), before and after training. Moderately active men completed one of three exercise interventions (matched for age, baseline strength, body composition, and aerobic capacity): resistance-only exercise (RE, n = 8), RE plus high-intensity interval exercise (RE+HIIE, n = 8), or HIIE+RE (n = 9). Participants trained 3 days/week for 10 weeks; concurrent sessions were separated by 3 h. On the first day of Weeks 1 and 10, muscle was sampled immediately before and after, and 3 h after each exercise mode and analyzed for molecular markers of MyoPS and muscle glycogen. Additional muscle, sampled pre- and post-training, was used to determine MyoPS using orally administered deuterium oxide (D2 O). In both weeks, MyoPS rates were comparable between groups. Post-exercise changes in proteins reflective of protein synthesis were also similar between groups, though MuRF1 and MAFbx mRNA exhibited some exercise order-dependent responses. In Week 10, exercise-induced changes in MyoPS and some genes (PGC-1ɑ and MuRF1) were dampened from Week 1. Concurrent exercise (in either order) did not compromise the anabolic response to resistance-only exercise, before or after training. MyoPS rates and some molecular responses to exercise are diminished after training.


Assuntos
Composição Corporal , Exercício Físico , Masculino , Humanos , Tolerância ao Exercício , Glicogênio , Músculos
2.
Sports Med ; 52(5): 971-993, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34905181

RESUMO

Basketball players face multiple challenges to in-season recovery. The purpose of this article is to review the literature on recovery modalities and nutritional strategies for basketball players and practical applications that can be incorporated throughout the season at various levels of competition. Sleep, protein, carbohydrate, and fluids should be the foundational components emphasized throughout the season for home and away games to promote recovery. Travel, whether by air or bus, poses nutritional and sleep challenges, therefore teams should be strategic about packing snacks and fluid options while on the road. Practitioners should also plan for meals at hotels and during air travel for their players. Basketball players should aim for a minimum of 8 h of sleep per night and be encouraged to get extra sleep during congested schedules since back-to back games, high workloads, and travel may negatively influence night-time sleep. Regular sleep monitoring, education, and feedback may aid in optimizing sleep in basketball players. In addition, incorporating consistent training times may be beneficial to reduce bed and wake time variability. Hydrotherapy, compression garments, and massage may also provide an effective recovery modality to incorporate post-competition. Future research, however, is warranted to understand the influence these modalities have on enhancing recovery in basketball players. Overall, a strategic well-rounded approach, encompassing both nutrition and recovery modality strategies, should be carefully considered and implemented with teams to support basketball players' recovery for training and competition throughout the season.


Assuntos
Basquetebol , Humanos , Massagem , Estações do Ano , Sono , Carga de Trabalho
3.
Geroscience ; 43(5): 2485-2495, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34283389

RESUMO

Skeletal muscle mass losses with age are associated with negative health consequences, including an increased risk of developing metabolic disease and the loss of independence. Athletes adopt numerous nutritional strategies to maximize the benefits of exercise training and enhance recovery in pursuit of improving skeletal muscle quality, mass, or function. Importantly, many of the principles applied to enhance skeletal muscle health in athletes may be applicable to support active aging and prevent sarcopenia in the healthy (non-clinical) aging population. Here, we discuss the anabolic properties of protein supplementation in addition to ingredients that may enhance the anabolic effects of protein (e.g. omega 3 s, creatine, inorganic nitrate) in older persons. We conclude that nutritional strategies used in pursuit of performance enhancement in athletes are often applicable to improve skeletal muscle health in the healthy older population when implemented as part of a healthy active lifestyle. Further research is required to elucidate the mechanisms by which these nutrients may induce favourable changes in skeletal muscle and to determine the appropriate dosing and timing of nutrient intakes to support active aging.


Assuntos
Sarcopenia , Ciências da Nutrição e do Esporte , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Atletas , Suplementos Nutricionais , Humanos , Sarcopenia/prevenção & controle
4.
FASEB J ; 35(5): e21587, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33891350

RESUMO

We examined the association between genotype and resistance training-induced changes (12 wk) in dual x-ray energy absorptiometry (DXA)-derived lean soft tissue mass (LSTM) as well as muscle fiber cross-sectional area (fCSA; vastus lateralis; n = 109; age = 22 ± 2 y, BMI = 24.7 ± 3.1 kg/m2 ). Over 315 000 genetic polymorphisms were interrogated from muscle using DNA microarrays. First, a targeted investigation was performed where single nucleotide polymorphisms (SNP) identified from a systematic literature review were related to changes in LSTM and fCSA. Next, genome-wide association (GWA) studies were performed to reveal associations between novel SNP targets with pre- to post-training change scores in mean fCSA and LSTM. Our targeted investigation revealed no genotype-by-time interactions for 12 common polymorphisms regarding the change in mean fCSA or change in LSTM. Our first GWA study indicated no SNP were associated with the change in LSTM. However, the second GWA study indicated two SNP exceeded the significance level with the change in mean fCSA (P = 6.9 × 10-7 for rs4675569, 1.7 × 10-6 for rs10263647). While the former target is not annotated (chr2:205936846 (GRCh38.p12)), the latter target (chr7:41971865 (GRCh38.p12)) is an intron variant of the GLI Family Zinc Finger 3 (GLI3) gene. Follow-up analyses indicated fCSA increases were greater in the T/C and C/C GLI3 genotypes than the T/T GLI3 genotype (P < .05). Data from the Auburn cohort also revealed participants with the T/C and C/C genotypes exhibited increases in satellite cell number with training (P < .05), whereas T/T participants did not. Additionally, those with the T/C and C/C genotypes achieved myonuclear addition in response to training (P < .05), whereas the T/T participants did not. In summary, this is the first GWA study to examine how polymorphisms associate with the change in hypertrophy measures following resistance training. Future studies are needed to determine if the GLI3 variant differentiates hypertrophic responses to resistance training given the potential link between this gene and satellite cell physiology.


Assuntos
Hipertrofia/patologia , Íntrons , Fibras Musculares Esqueléticas/patologia , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Treinamento Resistido/efeitos adversos , Proteína Gli3 com Dedos de Zinco/genética , Adulto , Estudo de Associação Genômica Ampla , Humanos , Hipertrofia/etiologia , Hipertrofia/metabolismo , Masculino , Fibras Musculares Esqueléticas/metabolismo , Adulto Jovem
5.
Front Sports Act Living ; 3: 630912, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33665614

RESUMO

Background: Cardiac rehabilitation exercise reduces the risk of secondary cardiovascular disease. Interval training is a time-efficient alternative to traditional cardiac rehabilitation exercise and stair climbing is an accessible means. We aimed to assess the effectiveness of a high-intensity interval stair climbing intervention on improving cardiorespiratory fitness ( V ˙ O 2 peak ) compared to standard cardiac rehabilitation care. Methods: Twenty participants with coronary artery disease (61 ± 7 years, 18 males, two females) were randomly assigned to either traditional moderate-intensity exercise (TRAD) or high-intensity interval stair climbing (STAIR). V ˙ O 2 peak was assessed at baseline, following 4 weeks of six supervised exercise sessions and after 8 weeks of ~24 unsupervised exercise sessions. TRAD involved a minimum of 30 min at 60-80%HRpeak, and STAIR consisted of three bouts of six flights of 12 stairs at a self-selected vigorous intensity (~90 s/bout) separated by recovery periods of walking (~90 s). This study was registered as a clinical trial at clinicaltrials.gov (NCT03235674). Results: Two participants could not complete the trial due to the time commitment of the testing visits, leaving n = 9 in each group who completed the interventions without any adverse events. V ˙ O 2 peak increased after supervised and unsupervised training in comparison to baseline for both TRAD [baseline: 22.9 ± 2.5, 4 weeks (supervised): 25.3 ± 4.4, and 12 weeks (unsupervised): 26.5 ± 4.8 mL/kg/min] and STAIR [baseline: 21.4 ± 4.5, 4 weeks (supervised): 23.4 ± 5.6, and 12 weeks (unsupervised): 25 ± 6.2 mL/kg/min; p (time) = 0.03]. During the first 4 weeks of training (supervised) the STAIR vs. TRAD group had a higher %HRpeak (101 ± 1 vs. 89 ± 1%; p ≤ 0.001), across a shorter total exercise time (7.1 ± 0.1 vs. 36.7 ± 1.1 min; p = 0.009). During the subsequent 8 weeks of unsupervised training, %HRpeak was not different (87 ± 8 vs. 96 ± 8%; p = 0.055, mean ± SD) between groups, however, the STAIR group continued to exercise for less time per session (10.0 ± 3.2 vs. 24.2 ± 17.0 min; p = 0.036). Conclusions: Both brief, vigorous stair climbing, and traditional moderate-intensity exercise are effective in increasing V ˙ O 2 peak , in cardiac rehabilitation exercise programmes.

6.
Physiol Rep ; 9(1): e14683, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33403796

RESUMO

Magnetic resonance imaging (MRI) is the current gold standard for measuring changes in muscle size (cross-sectional area [CSA] and volume) but can be cost-prohibitive and resource-intensive. We evaluated the validity of B-mode ultrasonography (US) as a low-cost alternative to MRI for measuring muscle hypertrophy and atrophy in response to resistance training and immobilization, respectively. Fourteen young men performed 10wk of unilateral resistance training (RT) to induce muscle hypertrophy. In the final two weeks of the 10wk, the subjects' contralateral leg was immobilized (IMB). The cross-sectional area of the vastus lateralis (VLCSA) was measured at the mid-thigh before and after each intervention using MRI (VLCSAMRI ) and US (VLCSAUS ). The relationship and agreement between methods were assessed. Reliability of US measurements ranged from good to excellent in all comparisons (ICC >0.67). VLCSA significantly increased after 10 weeks of RT (VLCSAUS : 7.9 ± 3.8%; VLCSAMRI : 7.8 ± 4.5%) and decreased after 2 weeks of IMB (VLCSAUS : -8.2%±5.8%; VLCSAMRI : -8.7 ± 6.1%). Significant correlations were identified between MRI and US at each time point measured (all r > 0.85) and, importantly, between MRI- and US-derived changes in VLCSA. Bland-Altman analysis revealed minimal bias in US measurements relative to the MRI (-0.5 ± 3.0%) and all measurements were within the upper and lower limits of agreement. Our data suggest that B-mode ultrasonography can be a suitable alternative to MRI for measuring changes in muscle size in response to increased and decreased muscle loading in young men.


Assuntos
Hipertrofia/patologia , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Músculo Quadríceps/patologia , Treinamento Resistido/efeitos adversos , Ultrassonografia/métodos , Adulto , Humanos , Hipertrofia/diagnóstico por imagem , Masculino , Músculo Esquelético/diagnóstico por imagem , Atrofia Muscular/diagnóstico por imagem , Músculo Quadríceps/diagnóstico por imagem , Treinamento Resistido/métodos
7.
Med Sci Sports Exerc ; 53(6): 1114-1124, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33394901

RESUMO

PURPOSE: There is a lack of knowledge as to how different exercise-based cardiac rehabilitation programming affects skeletal muscle adaptations in coronary artery disease (CAD) patients. We first characterized the skeletal muscle from adults with CAD compared with a group of age- and sex-matched healthy adults. We then determined the effects of a traditional moderate-intensity continuous exercise program (TRAD) or a stair climbing-based high-intensity interval training program (STAIR) on skeletal muscle metabolism in CAD. METHODS: Sixteen adults (n = 16, 61 ± 7 yr), who had undergone recent treatment for CAD, were randomized to perform (3 d·wk-1) either TRAD (n = 7, 30 min at 60%-80% of peak heart rate) or STAIR (n = 9, 3 × 6 flights) for 12 wk. Muscle biopsies were collected at baseline in both CAD and healthy controls (n = 9), and at 4 and 12 wk after exercise training in CAD patients undertaking TRAD or STAIR. RESULTS: We found that CAD had a lower capillary-to-fiber ratio (C/Fi, 35% ± 25%, P = 0.06) and capillary-to-fiber perimeter exchange (CFPE) index (23% ± 29%, P = 0.034) in Type II fibers compared with healthy controls. However, 12 wk of cardiac rehabilitation with either TRAD or STAIR increased C/Fi (Type II, 23% ± 14%, P < 0.001) and CFPE (Type I, 10% ± 23%, P < 0.01; Type II, 18% ± 22%, P = 0.002). CONCLUSION: Cardiac rehabilitation via TRAD or STAIR exercise training improved the compromised skeletal muscle microvascular phenotype observed in CAD patients.


Assuntos
Reabilitação Cardíaca/métodos , Doença da Artéria Coronariana/reabilitação , Treinamento Intervalado de Alta Intensidade/métodos , Músculo Esquelético/fisiologia , Subida de Escada/fisiologia , Adaptação Fisiológica , Idoso , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/cirurgia , Feminino , Humanos , Masculino , Microcirculação , Pessoa de Meia-Idade , Proteínas Mitocondriais/sangue , Músculo Esquelético/irrigação sanguínea , Óxido Nítrico Sintase Tipo III/sangue , Fosforilação , Fator A de Crescimento do Endotélio Vascular/sangue
8.
Cell Rep ; 32(5): 107980, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32755574

RESUMO

Loading of skeletal muscle changes the tissue phenotype reflecting altered metabolic and functional demands. In humans, heterogeneous adaptation to loading complicates the identification of the underpinning molecular regulators. A within-person differential loading and analysis strategy reduces heterogeneity for changes in muscle mass by ∼40% and uses a genome-wide transcriptome method that models each mRNA from coding exons and 3' and 5' untranslated regions (UTRs). Our strategy detects ∼3-4 times more regulated genes than similarly sized studies, including substantial UTR-selective regulation undetected by other methods. We discover a core of 141 genes correlated to muscle growth, which we validate from newly analyzed independent samples (n = 100). Further validating these identified genes via RNAi in primary muscle cells, we demonstrate that members of the core genes were regulators of protein synthesis. Using proteome-constrained networks and pathway analysis reveals notable relationships with the molecular characteristics of human muscle aging and insulin sensitivity, as well as potential drug therapies.


Assuntos
Músculo Esquelético/fisiologia , Adolescente , Adulto , Exercício Físico , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Tamanho do Órgão , Biossíntese de Proteínas , Proteoma/metabolismo , RNA/metabolismo , Transdução de Sinais , Suporte de Carga , Adulto Jovem
9.
Int J Sport Nutr Exerc Metab ; 30(3): 197-202, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32698123

RESUMO

We tested the hypothesis that presleep consumption of α-lactalbumin (LA), a fraction of whey with a high abundance of tryptophan, would improve indices of sleep quality and time-trial (TT) performance in cyclists relative to an isonitrogenous collagen peptide (CP) supplement lacking tryptophan. Using randomized, double-blind, crossover designs, cyclists consumed either 40 g of LA or CP 2 hr prior to sleep. In Study 1, six elite male endurance track cyclists (age 23 ± 6 years, V˙O2peak 70.2 ± 4.4 ml·kg-1·min-1) consumed a supplement for three consecutive evenings before each 4-km TT on a velodrome track, whereas in Study 2, six well-trained cyclists (one female; age 24 ± 5 years, V˙O2peak 66.9 ± 8.3 ml·kg-1·min-1) consumed a supplement the evening before each 4-km TT on a stationary cycle ergometer. Indices of sleep quality were assessed with wrist-based actigraphy. There were no differences between the CP and LA supplements in terms of total time in bed, total sleep time, or sleep efficiency in Study 1 (LA: 568 ± 71 min, 503 ± 67 min, 88.3% ± 3.4%; CP: 546 ± 30 min, 479 ± 35 min, 87.8% ± 3.1%; p = .41, p = .32, p = .74, respectively) or Study 2 (LA: 519 ± 90 min, 450 ± 78 min, 87.2% ± 7.6%; CP: 536 ± 62 min, 467 ± 57 min, 87.3% ± 6.4%; p = .43, p = .44, p = .97, respectively). Similarly, time to complete the 4-km TT was unaffected by supplementation in Study 1 (LA: 274.9 ± 7.6 s; CP: 275.5 ± 7.2 s; p = .62) and Study 2 (LA: 344.3 ± 22.3 s; CP: 343.3 ± 23.0 s; p = .50). Thus, relative to CP, consuming LA 2 hr prior to sleep over 1-3 days did not improve actigraphy-based indices of sleep quality or 4-km TT performance in cyclists.


Assuntos
Desempenho Atlético , Ciclismo , Suplementos Nutricionais , Lactalbumina/administração & dosagem , Sono , Actigrafia , Adolescente , Adulto , Estudos Cross-Over , Método Duplo-Cego , Teste de Esforço , Feminino , Humanos , Masculino , Consumo de Oxigênio , Adulto Jovem
10.
Nutrients ; 12(5)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349353

RESUMO

Skeletal muscle myofibrillar protein synthesis (MPS) increases in response to protein feeding and to resistance exercise (RE), where each stimuli acts synergistically when combined. The efficacy of plant proteins such as potato protein (PP) isolate to stimulate MPS is unknown. We aimed to determine the effects of PP ingestion on daily MPS with and without RE in healthy women. In a single blind, parallel-group design, 24 young women (21 ± 3 years, n = 12/group) consumed a weight-maintaining baseline diet containing 0.8 g/kg/d of protein before being randomized to consume either 25 g of PP twice daily (1.6 g/kg/d total protein) or a control diet (CON) (0.8 g/kg/d total protein) for 2 wks. Unilateral RE (~30% of maximal strength to failure) was performed thrice weekly with the opposite limb serving as a non-exercised control (Rest). MPS was measured by deuterated water ingestion at baseline, following supplementation (Rest), and following supplementation + RE (Exercise). Ingestion of PP stimulated MPS by 0.14 ± 0.09 %/d at Rest, and by 0.32 ± 0.14 %/d in the Exercise limb. MPS was significantly elevated by 0.20 ± 0.11 %/d in the Exercise limb in CON (P = 0.008). Consuming PP to increase protein intake to levels twice the recommended dietary allowance for protein augmented rates of MPS. Performance of RE stimulated MPS regardless of protein intake. PP is a high-quality, plant-based protein supplement that augments MPS at rest and following RE in healthy young women.


Assuntos
Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais , Exercício Físico/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Miofibrilas/metabolismo , Fenômenos Fisiológicos da Nutrição/fisiologia , Proteínas de Plantas/administração & dosagem , Treinamento Resistido , Descanso/fisiologia , Solanum tuberosum/química , Adolescente , Adulto , Extremidades , Feminino , Humanos , Recomendações Nutricionais , Adulto Jovem
11.
Am J Clin Nutr ; 111(3): 708-718, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31919527

RESUMO

BACKGROUND: Aging appears to attenuate the response of skeletal muscle protein synthesis (MPS) to anabolic stimuli such as protein ingestion (and the ensuing hyperaminoacidemia) and resistance exercise (RE). OBJECTIVES: The purpose of this study was to determine the effects of protein quality on feeding- and feeding plus RE-induced increases of acute and longer-term MPS after ingestion of whey protein (WP) and collagen protein (CP). METHODS: In a double-blind parallel-group design, 22 healthy older women (mean ± SD age: 69 ± 3 y, n = 11/group) were randomly assigned to consume a 30-g supplement of either WP or CP twice daily for 6 d. Participants performed unilateral RE twice during the 6-d period to determine the acute (via [13C6]-phenylalanine infusion) and longer-term (ingestion of deuterated water) MPS responses, the primary outcome measures. RESULTS: Acutely, WP increased MPS by a mean ± SD 0.017 ± 0.008%/h in the feeding-only leg (Rest) and 0.032 ± 0.012%/h in the feeding plus exercise leg (Exercise) (both P < 0.01), whereas CP increased MPS only in Exercise (0.012 ± 0.013%/h) (P < 0.01) and MPS was greater in WP than CP in both the Rest and Exercise legs (P = 0.02). Longer-term MPS increased by 0.063 ± 0.059%/d in Rest and 0.173 ± 0.104%/d in Exercise (P < 0.0001) with WP; however, MPS was not significantly elevated above baseline in Rest (0.011 ± 0.042%/d) or Exercise (0.020 ± 0.034%/d) with CP. Longer-term MPS was greater in WP than in CP in both Rest and Exercise (P < 0.001). CONCLUSIONS: Supplementation with WP elicited greater increases in both acute and longer-term MPS than CP supplementation, which is suggestive that WP is a more effective supplement to support skeletal muscle retention in older women than CP.This trial was registered at clinicaltrials.gov as NCT03281434.


Assuntos
Colágeno/metabolismo , Proteínas Musculares/metabolismo , Peptídeos/metabolismo , Biossíntese de Proteínas , Treinamento Resistido , Proteínas do Soro do Leite/metabolismo , Idoso , Colágeno/química , Suplementos Nutricionais/análise , Método Duplo-Cego , Feminino , Humanos , Proteínas Musculares/genética , Músculo Esquelético/metabolismo
12.
Ultrasound Med Biol ; 46(4): 992-1000, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31954551

RESUMO

Carotid artery longitudinal wall motion (CALM) exhibits reduced magnitude in older adults and in individuals with chronic diseases, although longitudinal data are lacking to indicate how changes in CALM might develop over time. Therefore, the aim of this study was to investigate the effect of exercise training in healthy men on CALM using a retrospective design. Carotid ultrasound data were analysed from two previous studies in which men performed 12 wk of moderate-intensity continuous exercise training (n = 9), sprint-interval training (n = 7), higher-repetition resistance exercise training (n = 15) or lower-repetition resistance exercise training (n = 15). The CALM pattern was unaltered after 12 wk of exercise training, regardless of exercise mode, with no differences in systolic or diastolic CALM magnitudes (p > 0.05), similar to carotid intima-media thickness (p > 0.05). Our findings suggest that CALM is resistant to transient changes in lifestyle factors, similar to wall thickness in otherwise healthy populations.


Assuntos
Artérias Carótidas/fisiopatologia , Treino Aeróbico , Treinamento Resistido , Adulto , Artérias Carótidas/diagnóstico por imagem , Espessura Intima-Media Carotídea , Exercício Físico , Humanos , Masculino , Esforço Físico , Estudos Retrospectivos , Ultrassonografia , Rigidez Vascular , Adulto Jovem
13.
Med Sci Sports Exerc ; 52(6): 1394-1403, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31895298

RESUMO

INTRODUCTION: Protein ingestion and the ensuing hyperaminoacidemia stimulates skeletal muscle protein synthesis in the postexercise period. This response facilitates muscle remodeling, which is important during intensified training. The aim of this study was to determine whether supplementation with α-lactalbumin (LA), with high leucine and tryptophan contents, would improve responses to short periods of intensified aerobic training compared with supplementation with an isonitrogenous quantity of collagen peptides (CP). METHODS: Endurance-trained participants (5 male, 6 female, 24 ± 4 yr, V˙O2 = 53.2 ± 9.1 mL·kg·min, peak power output = 320 ± 48 W; means ± SD) consumed a controlled diet (1.0 g·kg·d protein) and refrained from habitual training for 11 d while taking part in this double-blind randomized, crossover trial. The two intervention phases, which consisted of brief intensified training (4 × 4-min cycling intervals at 70% of peak power output on 3 consecutive days) combined with the ingestion of LA or CP supplements after exercise (20 g) and before sleep (40 g), were separated by 4 d of washout without protein supplementation (i.e., the control phase). In response to each phase, myofibrillar (MyoPS), sarcoplasmic protein synthesis (SarcPS) rates (via H2O ingestion) and parameters of sleep quality were measured. RESULTS: LA ingestion increased plasma leucine (P < 0.001) and tryptophan concentrations (P < 0.001) relative to CP. Intensified training increased MyoPS and SarcPS above the washout phase in LA- and CP-supplemented phases (P < 0.01), with increases being 13% ± 5% and 5% ± 7% greater with LA than CP for MyoPS (P < 0.01) and SarcPS, respectively (P < 0.01). CONCLUSIONS: Despite an isonitrogenous diet, protein synthesis was enhanced to a greater extent when trained participants consumed LA compared with CP during intensified aerobic training, suggesting that protein quality is an important consideration for endurance-trained athletes aiming to augment adaption to exercise training.


Assuntos
Colágeno/administração & dosagem , Suplementos Nutricionais , Exercício Físico/fisiologia , Lactalbumina/administração & dosagem , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Condicionamento Físico Humano/fisiologia , Disponibilidade Biológica , Feminino , Humanos , Leucina/administração & dosagem , Leucina/sangue , Masculino , Miofibrilas/metabolismo , Retículo Sarcoplasmático/metabolismo , Sono/fisiologia , Triptofano/administração & dosagem , Triptofano/sangue , Adulto Jovem
14.
Front Physiol ; 10: 1084, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31543824

RESUMO

BACKGROUND: An impaired muscle anabolic response to exercise and protein nutrition is thought to underpin age-related muscle loss, which may be exacerbated by aspects of biological aging that may not be present in older individuals who have undertaken long-term high-level exercise training, or master athletes (MA). The aim of this study was to compare rested-state and exercise-induced rates of integrated myofibrillar protein synthesis (iMyoPS) and intracellular signaling in endurance trained MA and healthy age-matched untrained individuals (Older Controls). METHODS: In a parallel study design, iMyoPS rates were determined over 48 h in the rested-state and following a bout of unaccustomed resistance exercise (RE) in OC (n = 8 males; 73.5 ± 3.3 years) and endurance-trained MA (n = 7 males; 68.9 ± 5.7 years). Intramuscular anabolic signaling was also determined. During the iMyoPS measurement period, physical activity was monitored via accelerometry and dietary intake was controlled. RESULTS: Anthropometrics, habitual activity, and dietary intake were similar between groups. There was no difference in rested-state rates of iMyoPS between OC (1.47 ± 0.06%⋅day-1) and MA (1.46 ± 0.08%⋅day-1). RE significantly increased iMyoPS above rest in both OC (1.60 ± 0.08%⋅day-1, P < 0.01) and MA (1.61 ± 0.08%⋅day-1, P < 0.01), with no difference between groups. Akt T h r308 phosphorylation increased at 1 h post-RE in OC (P < 0.05), but not MA. No other between-group differences in intramuscular signaling were apparent at any time-point. CONCLUSION: While our sample size is limited, these data suggest that rested-state and RE-induced iMyoPS are indistinguishable between MA and OC. Importantly, the OC retain a capacity for RE-induced stimulation of skeletal muscle remodeling.

15.
Front Nutr ; 6: 75, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31179284

RESUMO

Declines in strength and muscle function with age-sarcopenia-contribute to a variety of negative outcomes including an increased risk of: falls, fractures, hospitalization, and reduced mobility in older persons. Population-based estimates of the loss of muscle after age 60 show a loss of ~1% per year while strength loss is more rapid at ~3% per year. These rates are not, however, linear as periodic bouts of reduced physical activity and muscle disuse transiently accelerate loss of muscle and declines in muscle strength and power. Episodic complete muscle disuse can be due to sickness-related bed rest or local muscle disuse as a result of limb immobilization/surgery. Alternatively, relative muscle disuse occurs during inactivity due to illness and the associated convalescence resulting in marked reductions in daily steps, often referred to as step reduction (SR). While it is a "milder" form of disuse, it can have a similar adverse impact on skeletal muscle health. The physiological consequences of even short-term inactivity, modeled by SR, show losses in muscle mass and strength, as well as impaired insulin sensitivity and an increase in systemic inflammation. Though seemingly benign in comparison to bed rest, periodic inactivity likely occurs, we posit, more frequently with advancing age due to illness, declining mental health and declining mobility. Given that recovery from inactivity in older adults is slow or possibly incomplete we hypothesize that accumulated periods of inactivity contribute to sarcopenia. Periodic activity, even in small quantities, and protein supplementation may serve as effective strategies to offset the loss of muscle mass with aging, specifically during periods of inactivity. The aim of this review is to examine the recent literature encompassing SR, as a model of inactivity, and to explore the capacity of nutrition and exercise interventions to mitigate adverse physiological changes as a result of SR.

16.
Appl Physiol Nutr Metab ; 44(10): 1052-1056, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30794431

RESUMO

Older adults can experience periods of inactivity related to disease or illness, which can hasten the development of physical disability, in part, through reductions in skeletal muscle strength and power. To date no study has characterized adaptations in skeletal muscle physical function in response to reduced daily physical activity. Participants (15 men, aged 69 ± 2 years; 15 women, aged 68 ± 4 years) restricted their daily steps (<750 steps/day) while being energy restricted (-500 kcal/day) for 2 weeks before returning to normal activity levels during recovery (RC; 1 week). Before and after each phase, measures of knee extensor isometric maximum voluntary contraction (MVC), time-to-peak torque, and physical function were performed and muscle biopsies were taken from a subset of participants. Following the energy restriction and step-reduction phase (ER+SR), MVC was reduced by 9.1 and 6.1 Nm in men and women, respectively (p = 0.02), which returned to baseline after RC in men, but not women (p = 0.046). Maximum isometric tension in MHC IIA fibres (p < 0.01) and maximum power production in MHC I and IIA (p = 0.05) were increased by 14%, 25%, and 10%, respectively, following ER+SR. Reductions in muscle strength could not be explained by changes in single muscle fibre function in a subsample (n = 9 men) of volunteers. These data highlight the resilience of physical function in healthy older men in the face of an acute period of ER+SR and demonstrate sex-based differences in the ability to recover muscle strength upon resumption of physical activity.


Assuntos
Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , Adaptação Fisiológica , Idoso , Idoso de 80 Anos ou mais , Biópsia , Restrição Calórica , Feminino , Humanos , Contração Isométrica/fisiologia , Masculino , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/fisiologia , Força Muscular/fisiologia , Projetos Piloto , Caracteres Sexuais , Torque
17.
Appl Physiol Nutr Metab ; 44(8): 820-826, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30620666

RESUMO

Previous longitudinal studies suggest that left ventricular (LV) structure is unaltered with resistance exercise training (RT) in young men. However, evidence from aerobic exercise training suggests that early changes in functional LV wall mechanics may occur prior to and independently of changes in LV size, although short-term changes in LV mechanics and structural remodelling in response to RT protocols have not been reported. Therefore, the purpose of this study was to examine the effects of RT on LV mechanics in healthy men performing 2 different time-under-tension protocols. Forty recreationally trained men (age: 23 ± 3 years) were randomized into 12 weeks of whole-body higher-repetition RT (20-25 repetitions/set to failure at ∼30%-50% 1 repetition maximum (1RM); n = 13), lower-repetition RT (8-12 repetitions/set to failure at ∼75%-90% 1RM; n = 13), or an active control period (n = 14). Speckle tracking echocardiography was performed at baseline and following the intervention period. Neither RT program altered standard measures of LV volumes (end-diastolic volume, end-systolic volume, or ejection fraction; P > 0.05) or indices of LV mechanics (total LV twist, untwisting rate, twist-to-shortening ratio, untwisting-to-twist ratio, or longitudinal strain; P > 0.05). This is the first longitudinal study to assess both LV size and mechanics after RT in healthy men, suggesting a maintenance of LV size and twist mechanics despite peripheral muscle adaptations to the training programs. These results provide no evidence for adverse LV structural or functional remodelling in response to RT in young men and support the positive role of RT in the maintenance of optimal cardiovascular function, even with strenuous RT.


Assuntos
Ventrículos do Coração , Treinamento Resistido , Função Ventricular Esquerda/fisiologia , Remodelação Ventricular/fisiologia , Adulto , Ecocardiografia , Humanos , Estudos Longitudinais , Masculino , Adulto Jovem
18.
Am J Clin Nutr ; 108(5): 1060-1068, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30289425

RESUMO

Background: In older persons, muscle loss is accelerated during physical inactivity and hypoenergetic states, both of which are features of hospitalization. Protein supplementation may represent a strategy to offset the loss of muscle during inactivity, and enhance recovery on resumption of activity. Objective: We aimed to determine if protein supplementation, with proteins of substantially different quality, would alleviate the loss of lean mass by augmenting muscle protein synthesis (MPS) while inactive during a hypoenergetic state. Design: Participants (16 men, mean ± SD age: 69 ± 3 y; 15 women, mean ± SD age: 68 ± 4 y) consumed a diet containing 1.6 g protein · kg-1 · d-1, with 55% ± 9% of protein from foods and 45% ± 9% from supplements, namely, whey protein (WP) or collagen peptides (CP): 30 g each, consumed 2 times/d. Participants were in energy balance (EB) for 1 wk, then began a period of energy restriction (ER; -500 kcal/d) for 1 wk, followed by ER with step reduction (ER + SR; <750 steps/d) for 2 wk, before a return to habitual activity in recovery (RC) for 1 wk. Results: There were significant reductions in leg lean mass (LLM) from EB to ER, and from ER to ER + SR in both groups (P < 0.001) with no differences between WP and CP or when comparing the change from phase to phase. During RC, LLM increased from ER + SR, but in the WP group only. Rates of integrated muscle protein synthesis decreased during ER and ER + SR in both groups (P < 0.01), but increased during RC only in the WP group (P = 0.05). Conclusions: Protein supplementation did not confer a benefit in protecting LLM, but only supplemental WP augmented LLM and muscle protein synthesis during recovery from inactivity and a hypoenergetic state. This trial was registered at http://www.clinicaltrials.gov as NCT03285737.


Assuntos
Suplementos Nutricionais , Ingestão de Energia , Atividade Motora , Proteínas Musculares/biossíntese , Músculo Esquelético/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas do Soro do Leite/farmacologia , Idoso , Restrição Calórica , Colágeno/farmacologia , Convalescença , Metabolismo Energético , Feminino , Hospitalização , Humanos , Perna (Membro) , Masculino , Músculo Esquelético/metabolismo , Peptídeos/farmacologia , Descanso , Caminhada
19.
Front Physiol ; 9: 1373, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356739

RESUMO

The factors that underpin heterogeneity in muscle hypertrophy following resistance exercise training (RET) remain largely unknown. We examined circulating hormones, intramuscular hormones, and intramuscular hormone-related variables in resistance-trained men before and after 12 weeks of RET. Backward elimination and principal component regression evaluated the statistical significance of proposed circulating anabolic hormones (e.g., testosterone, free testosterone, dehydroepiandrosterone, dihydrotestosterone, insulin-like growth factor-1, free insulin-like growth factor-1, luteinizing hormone, and growth hormone) and RET-induced changes in muscle mass (n = 49). Immunoblots and immunoassays were used to evaluate intramuscular free testosterone levels, dihydrotestosterone levels, 5α-reductase expression, and androgen receptor content in the highest- (HIR; n = 10) and lowest- (LOR; n = 10) responders to the 12 weeks of RET. No hormone measured before exercise, after exercise, pre-intervention, or post-intervention was consistently significant or consistently selected in the final model for the change in: type 1 cross sectional area (CSA), type 2 CSA, or fat- and bone-free mass (LBM). Principal component analysis did not result in large dimension reduction and principal component regression was no more effective than unadjusted regression analyses. No hormone measured in the blood or muscle was different between HIR and LOR. The steroidogenic enzyme 5α-reductase increased following RET in the HIR (P < 0.01) but not the LOR (P = 0.32). Androgen receptor content was unchanged with RET but was higher at all times in HIR. Unlike intramuscular free testosterone, dihydrotestosterone, or 5α-reductase, there was a linear relationship between androgen receptor content and change in LBM (P < 0.01), type 1 CSA (P < 0.05), and type 2 CSA (P < 0.01) both pre- and post-intervention. These results indicate that intramuscular androgen receptor content, but neither circulating nor intramuscular hormones (or the enzymes regulating their intramuscular production), influence skeletal muscle hypertrophy following RET in previously trained young men.

20.
Am J Physiol Regul Integr Comp Physiol ; 315(2): R267-R273, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29897821

RESUMO

Resistance training promotes microvasculature expansion; however, it remains unknown how different resistance training programs contribute to angiogenesis. Thus, we recruited experienced resistance-trained participants and determined the effect of 12 wk of either high-repetition/low-load or low-repetition/high-load resistance training performed to volitional fatigue on muscle microvasculature. Twenty men performed either a high-repetition [20-25 repetitions, 30-50% of 1-repetition maximum (1RM); n = 10] or a low-repetition (8-12 repetitions, 75-90% of 1RM; n = 10) resistance training program. Muscle biopsies were taken before and after resistance training, and immunohistochemistry was used to assess fiber type (I and II)-specific microvascular variables. High-repetition/low-load and low-repetition/high-load groups were not different in any variable before resistance training. Both protocols resulted in an increase in capillarization. Specifically, after resistance training, the capillary-to-fiber ratio, capillary contacts, and capillary-to-fiber perimeter exchange index were elevated, and sharing factor was reduced. These data demonstrate that resistance training performed to volitional failure, using either high repetition/low load or low repetition/high load, induced similar microvascular adaptations in recreationally resistance-trained young men.


Assuntos
Microvasos/fisiologia , Contração Muscular , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Treinamento Resistido , Adaptação Fisiológica , Fatores Etários , Composição Corporal , Humanos , Masculino , Microvasos/metabolismo , Mitocôndrias Musculares/metabolismo , Força Muscular , Músculo Esquelético/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Ontário , Fosforilação Oxidativa , Fatores Sexuais , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA