Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Bone Miner Metab ; 37(4): 627-635, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30324536

RESUMO

Insulin-like growth factor-I (IGF-I) is a peptide with diverse functions, among them regulation of embryonic development and bone homeostasis. Serum IGF-I levels decline in the elderly; however, IGF-I function in adults has not been clearly defined. Here, we show that IGF-I is required to maintain muscle mass in adults. We crossed Igf-I flox'd and Mx1 Cre mice to yield Mx1 Cre/Igf-Iflox/flox (IGF-I cKO) mice, and deleted Igf-I in adult mice by polyIpolyC injection. We demonstrate that, although serum IGF-I levels significantly decreased after polyIpolyC injection relative to (Igf-Iflox/flox) controls, serum glucose levels were unchanged. However, muscle mass decreased significantly after IGF-I down-regulation, while bone mass remained the same. In IGF-I cKO muscle, expression of anabolic factors such as Eif4e and p70S6K significantly decreased, while expression of catabolic factors MuRF1 and Atrogin-1 was normal and down-regulated, respectively, suggesting that observed muscle mass reduction was due to perturbed muscle metabolism. Our data demonstrate a specific role for IGF-I in maintaining muscle homeostasis in adults.


Assuntos
Envelhecimento/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Músculo Esquelético/anatomia & histologia , Animais , Regulação para Baixo , Masculino , Camundongos Transgênicos , Modelos Biológicos , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Atrofia Muscular/patologia , Transdução de Sinais
2.
Sci Rep ; 8(1): 15783, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30361689

RESUMO

Auto-inflammatory syndrome, a condition clinically distinct from rheumatoid arthritis, is characterized by systemic inflammation in tissues such as major joints, skin, and internal organs. Autonomous innate-immune activation is thought to promote this inflammation, but underlying pathological mechanisms have not been clarified nor are treatment strategies established. Here, we newly established a mouse model in which IL-1 signaling is conditionally activated in adult mice (hIL-1 cTg) and observed phenotypes similar to those seen in auto-inflammatory syndrome patients. In serum of hIL-1 cTg mice, IL-6 and IL-17 levels significantly increased, and signal transducer and activator of transcription 3 (Stat3) was activated in joints. When we crossed hIL-1 cTg with either IL-6- or IL-17-deficient mice or with Stat3 conditional knockout mice, phenotypes seen in hIL-1 cTg mice were significantly ameliorated. Thus, IL-6, IL-17 and Stat3 all represent potential therapeutic targets for this syndrome.


Assuntos
Inflamação/metabolismo , Inflamação/patologia , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Artrite Experimental/patologia , Deleção de Genes , Humanos , Interleucina-1alfa/metabolismo , Articulações/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Síndrome
3.
Sci Rep ; 7(1): 10965, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28887478

RESUMO

Rheumatoid arthritis (RA) is a multi-factorial disease characterized by chronic inflammation and destruction of multiple joints. To date, various biologic treatments for RA such as anti-tumor necrosis factor alpha antibodies have been developed; however, mechanisms underlying RA development remain unclear and targeted therapy for this condition has not been established. Here, we provide evidence that signal transducer and activator of transcription 3 (Stat3) promotes inflammation and joint erosion in a mouse model of arthritis. Stat3 global KO mice show early embryonic lethality; thus, we generated viable Stat3 conditional knockout adult mice and found that they were significantly resistant to collagen-induced arthritis (CIA), the most common RA model, compared with controls. We then used an in vitro culture system to screen ninety-six existing drugs to select Stat3 inhibitors and selected five candidate inhibitors. Among them, three significantly inhibited development of arthritis and joint erosion in CIA wild-type mice. These findings suggest that Stat3 inhibitors may serve as promising drugs for RA therapy.


Assuntos
Antirreumáticos/farmacologia , Artrite Experimental/genética , Artrite Reumatoide/genética , Fator de Transcrição STAT3/genética , Células 3T3 , Animais , Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Células Cultivadas , Células HeLa , Humanos , Articulações/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo
4.
Sci Rep ; 7(1): 7786, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798354

RESUMO

Control of phosphate metabolism is crucial to regulate aging in mammals. Klotho is a well-known anti-aging factor that regulates phosphate metabolism: mice mutant or deficient in Klotho exhibit phenotypes resembling human aging. Here we show that ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1) is required for Klotho expression under phosphate overload conditions. Loss-of-function Enpp1 ttw/ttw mice under phosphate overload conditions exhibited phenotypes resembling human aging and Klotho mutants, such as short life span, arteriosclerosis and osteoporosis, with elevated serum 1,25(OH)2D3 levels. Enpp1 ttw/ttw mice also exhibited significantly reduced renal Klotho expression under phosphate overload conditions, and aging phenotypes in these mice were rescued by Klotho overexpression, a low vitamin D diet or vitamin D receptor knockout. These findings indicate that Enpp1 plays a crucial role in regulating aging via Klotho expression under phosphate overload conditions.


Assuntos
Envelhecimento/metabolismo , Glucuronidase/genética , Fosfatos/metabolismo , Diester Fosfórico Hidrolases/genética , Pirofosfatases/genética , Envelhecimento/patologia , Animais , Densidade Óssea , Calcitriol/sangue , Glucuronidase/metabolismo , Proteínas Klotho , Mutação com Perda de Função , Camundongos , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/metabolismo
5.
Sci Rep ; 7: 46322, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28387378

RESUMO

Various conditions, including bacterial infection, can promote osteonecrosis. For example, following invasive dental therapy with anti-bone resorptive agents, some patients develop osteonecrosis in the jaw; however, pathological mechanisms underlying these outcomes remain unknown. Here, we show that administration of anti-resorptive agents such as the bisphosphonate alendronate accelerates osteonecrosis promoted by infectious osteomyelitis. Potent suppression of bone turnover by these types of agents is considered critical for osteonecrosis development; however, using mouse models we found that acceleration of bone turnover by teriparatide injection did not prevent osteonecrosis but rather converted osteoclast progenitors to macrophages expressing inflammatory cytokines, which were required for osteonecrosis development. In fact, we demonstrate that TNFα-, IL-1α/ß- or IL-6-deficient mice as well as wild-type mice administered a TNFα-inhibitor were significantly resistant to development of osteonecrosis accompanying infectious myelitis, even under bisphosphonate treatment. Our data provide new insight into mechanisms underlying osteonecrosis and suggest new ways to prevent it.


Assuntos
Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/metabolismo , Interleucinas/metabolismo , Osteomielite/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Alendronato/efeitos adversos , Animais , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/etiologia , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/patologia , Conservadores da Densidade Óssea/efeitos adversos , Remodelação Óssea , Células Cultivadas , Interleucinas/genética , Macrófagos/efeitos dos fármacos , Camundongos , Osteoblastos/efeitos dos fármacos , Osteomielite/complicações , Osteomielite/patologia , Fator de Necrose Tumoral alfa/genética
6.
Biochem Biophys Res Commun ; 482(4): 1430-1436, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27974229

RESUMO

Rapid increases in the number of elderly people have dramatically increased the number of female and male osteoporosis patients. Osteoporosis often causes bone fragility fractures, and males exhibit particularly poor prognosis after these fractures, indicating that control of osteoporosis is crucial to maintain quality of men's lives. However, osteoporosis therapies available for men have lagged behind advances available for women. Here, we show that three selective estrogen receptor modulators (SERMs), namely, raloxifene, bazedoxifene, and tamoxifen, plus the vitamin D analogue ED71, also called eldecalcitol, completely block orchiectomy-induced, testosterone-depleted bone loss in male mice in vivo. Patients treated with hormone deprivation therapy for prostate cancer also exhibit male osteoporosis, and bone management is critical for these patients. Given that androgen replacement therapy is not an option for these patients, our results represent a novel approach potentially useful to control male osteoporosis.


Assuntos
Reabsorção Óssea/prevenção & controle , Osteoporose/tratamento farmacológico , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Vitamina D/análogos & derivados , Animais , Densidade Óssea , Conservadores da Densidade Óssea/farmacologia , Doenças Ósseas Metabólicas/induzido quimicamente , Doenças Ósseas Metabólicas/prevenção & controle , Reabsorção Óssea/induzido quimicamente , Osso e Ossos/efeitos dos fármacos , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Orquiectomia , Cloridrato de Raloxifeno/farmacologia , Tamoxifeno/farmacologia , Testosterona/deficiência , Vitamina D/farmacologia
7.
Biochem Biophys Res Commun ; 480(4): 662-668, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27983979

RESUMO

Both bone and muscle volume is concomitantly reduced under immobilization conditions; however, no single drug is currently available to block these outcomes simultaneously. Bisphosphonates are utilized clinically to inhibit osteoclast-dependent bone resorption, but their effects on muscle are largely unknown. Here we show that skeletal muscle is a direct target of the bisphosphonate ibandronate (IBN) and that reduced muscle volume and induction of Atrogin-1 and MuRF1, both atrogenes, are significantly inhibited by IBN administration in vivo using a mouse model of muscle atrophy. IBN treatment also significantly blocked immobilization-induced bone loss in vivo. We also report that expression of Atrogin-1 and MuRF1 and accumulation of Smad2/3 proteins, which are upstream of atrogines, occurred following serum starvation of myogenic C2C12 cells in vitro, effects significantly inhibited by IBN treatment. Interestingly, IBN effects on C2C12 cells were abrogated by MG132, an ubiquitin/proteasome inhibitor, suggesting that IBN functions via the ubiquitin-proteasome system. Our findings lend new insight into the role of IBN in preventing muscle atrophy.


Assuntos
Reabsorção Óssea/prevenção & controle , Reabsorção Óssea/fisiopatologia , Difosfonatos/farmacologia , Imobilização/efeitos adversos , Atrofia Muscular/prevenção & controle , Atrofia Muscular/fisiopatologia , Animais , Conservadores da Densidade Óssea/farmacologia , Reabsorção Óssea/etiologia , Linhagem Celular , Relação Dose-Resposta a Droga , Feminino , Ácido Ibandrônico , Camundongos , Camundongos Endogâmicos C57BL , Atrofia Muscular/etiologia , Tamanho do Órgão/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Resultado do Tratamento , Ubiquitinação/efeitos dos fármacos
8.
PLoS One ; 11(11): e0165922, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27802325

RESUMO

Anti-bone resorptive drugs such as bisphosphonates, the anti-RANKL antibody (denosumab), or selective estrogen receptor modulators (SERMs) have been developed to treat osteoporosis. Mechanisms underlying activity of bisphosphonates or denosumab in this context are understood, while it is less clear how SERMs like tamoxifen, raloxifene, or bazedoxifene inhibit bone resorption. Recently, accumulation of hypoxia inducible factor 1 alpha (Hif1α) in osteoclasts was shown to be suppressed by estrogen in normal cells. In addition, osteoclast activation and decreased bone mass seen in estrogen-deficient conditions was found to require Hif1α. Here, we used western blot analysis of cultured osteoclast precursor cells to show that tamoxifen, raloxifene, or bazedoxifene all suppress Hif1α protein accumulation. The effects of each SERM on osteoclast differentiation differed in vitro. Our results suggest that interventions such as the SERMs evaluated here could be useful to inhibit Hif1α and osteoclast activity under estrogen-deficient conditions.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Animais , Reabsorção Óssea/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/citologia , Transporte Proteico/efeitos dos fármacos , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico
9.
Sci Rep ; 6: 35221, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27731422

RESUMO

Bone homeostasis is maintained as a delicate balance between bone-resorption and bone-formation, which are coupled to maintain appropriate bone mass. A critical question is how bone-resorption is terminated to allow bone-formation to occur. Here, we show that TGFßs inhibit osteoclastogenesis and maintain bone-mass through Smad4 activity in osteoclasts. We found that latent-TGFß1 was activated by osteoclasts to inhibit osteoclastogenesis. Osteoclast-specific Smad4 conditional knockout mice (Smad4-cKO) exhibited significantly reduced bone-mass and elevated osteoclast formation relative to controls. TGFß1-activation induced expression of Irf8 and Bcl6, both of which encode factors inhibiting osteoclastogenesis, by blocking their negative regulator, Prdm1, in osteoclasts in a Smad4-dependent manner. Reduced bone-mass and accelerated osteoclastogenesis seen in Smad4-cKO were abrogated by Prdm1 deletion. Administration of latent-TGFß1-Fc to wild-type mice antagonized LPS-induced bone destruction in a model of activated osteoclast-mediated bone destruction. Thus, latent-TGFß1-Fc could serve as a promising new therapeutic agent in bone diseases marked by excessive resorption.


Assuntos
Densidade Óssea , Osteogênese/fisiologia , Proteína Smad4/fisiologia , Animais , Diferenciação Celular , Fatores Reguladores de Interferon/metabolismo , Camundongos , Osteoclastos/efeitos dos fármacos , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta1/administração & dosagem
10.
J Biol Chem ; 291(23): 12184-94, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27129272

RESUMO

Skeletal muscle atrophy promotes muscle weakness, limiting activities of daily living. However, mechanisms underlying atrophy remain unclear. Here, we show that skeletal muscle immobilization elevates Smad2/3 protein but not mRNA levels in muscle, promoting atrophy. Furthermore, we demonstrate that myostatin, which negatively regulates muscle hypertrophy, is dispensable for denervation-induced muscle atrophy and Smad2/3 protein accumulation. Moreover, muscle-specific Smad2/3-deficient mice exhibited significant resistance to denervation-induced muscle atrophy. In addition, expression of the atrogenes Atrogin-1 and MuRF1, which underlie muscle atrophy, did not increase in muscles of Smad2/3-deficient mice following denervation. We also demonstrate that serum starvation promotes Smad2/3 protein accumulation in C2C12 myogenic cells, an in vitro muscle atrophy model, an effect inhibited by IGF1 treatment. In vivo, we observed IGF1 receptor deactivation in immobilized muscle, even in the presence of normal levels of circulating IGF1. Denervation-induced muscle atrophy was accompanied by reduced glucose intake and elevated levels of branched-chain amino acids, effects that were Smad2/3-dependent. Thus, muscle immobilization attenuates IGF1 signals at the receptor rather than the ligand level, leading to Smad2/3 protein accumulation, muscle atrophy, and accompanying metabolic changes.


Assuntos
Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Western Blotting , Linhagem Celular , Glucose/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Camundongos Knockout , Camundongos Transgênicos , Denervação Muscular , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/inervação , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Miostatina/genética , Miostatina/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Restrição Física/efeitos adversos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteína Smad2/genética , Proteína Smad3/genética , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
11.
Biochem Biophys Res Commun ; 470(2): 391-396, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26792721

RESUMO

The number of osteoporosis patients is increasing not only in women but in men. Male osteoporosis occurs due to aging or androgen depletion therapies, leading to fractures. However, molecular mechanisms underlying male osteoporosis remain unidentified. Here, we show that hypoxia inducible factor 1 alpha (Hif1α) is required for development of testosterone deficiency-induced male osteoporosis. We found that in mice Hif1α protein accumulates in osteoclasts following orchidectomy (ORX) in vivo. In vitro, Hif1α protein accumulated in osteoclasts cultured in hypoxic conditions, but Hif1α protein rather than mRNA levels were suppressed by testosterone treatment, even in hypoxia. Administration of a Hif1α inhibitor to ORX mice abrogated testosterone deficiency-induced osteoclast activation and bone loss but did not alter osteoclast activities or bone phenotypes in sham-operated, testosterone-sufficient animals. We conclude that Hif1α protein accumulation due to testosterone-deficiency promotes development of male osteoporosis. Thus Hif1α protein could be targeted to inhibit pathologically-activated osteoclasts under testosterone-deficient conditions to treat male osteoporosis patients.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteoporose/metabolismo , Osteoporose/patologia , Testosterona/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA