Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35131937

RESUMO

Land use is central to addressing sustainability issues, including biodiversity conservation, climate change, food security, poverty alleviation, and sustainable energy. In this paper, we synthesize knowledge accumulated in land system science, the integrated study of terrestrial social-ecological systems, into 10 hard truths that have strong, general, empirical support. These facts help to explain the challenges of achieving sustainability in land use and thus also point toward solutions. The 10 facts are as follows: 1) Meanings and values of land are socially constructed and contested; 2) land systems exhibit complex behaviors with abrupt, hard-to-predict changes; 3) irreversible changes and path dependence are common features of land systems; 4) some land uses have a small footprint but very large impacts; 5) drivers and impacts of land-use change are globally interconnected and spill over to distant locations; 6) humanity lives on a used planet where all land provides benefits to societies; 7) land-use change usually entails trade-offs between different benefits-"win-wins" are thus rare; 8) land tenure and land-use claims are often unclear, overlapping, and contested; 9) the benefits and burdens from land are unequally distributed; and 10) land users have multiple, sometimes conflicting, ideas of what social and environmental justice entails. The facts have implications for governance, but do not provide fixed answers. Instead they constitute a set of core principles which can guide scientists, policy makers, and practitioners toward meeting sustainability challenges in land use.


Assuntos
Agricultura , Conservação dos Recursos Naturais/métodos , Ecossistema , Humanos , Energia Renovável , Mudança Social
2.
Environ Manage ; 64(5): 626-639, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31583444

RESUMO

Agricultural emissions are the primary source of ammonia (NH3) deposition in Rocky Mountain National Park (RMNP), a Class I area, that is granted special air quality protections under the Clean Air Act. Between 2014 and 2016, the pilot phase of the Colorado agricultural nitrogen early warning system (CANEWS) was developed for agricultural producers to voluntarily and temporarily minimize emissions of NH3 during periods of upslope winds. The CANEWS was created using trajectory analyses driven by outputs from an ensemble of numerical weather forecasts together with the climatological expertize of human forecasters. Here, we discuss the methods for the CANEWS and offer preliminary analyses of 33 months of the CANEWS based on atmospheric deposition data from two sites in RMNP as well as responses from agricultural producers after warnings were issued. Results showed that the CANEWS accurately predicted 6 of 9 high N deposition weeks at a lower-elevation observation site, but only 4 of 11 high N deposition weeks at a higher-elevation site. Sixty agricultural producers from 39 of Colorado's agricultural operations volunteered for the CANEWS, and a two-way line of communication between agricultural producers and scientists was formed. For each warning issued, an average of 23 producers responded to a postwarning survey. Over 75% of responding CANEWS participants altered their practices after an alert. While the current effort was insufficient to reduce atmospheric deposition, we were encouraged by the collaborative spirit between agricultural, scientific, and resource management communities. Solving a broad and complex social-ecological problem requires both a technological approach, such as the CANEWS, and collaboration and trust from all participants, including agricultural producers, land managers, university researchers, and environmental agencies.


Assuntos
Poluentes Atmosféricos , Compostos de Amônio , Agricultura , Colorado , Monitoramento Ambiental , Humanos , Nitrogênio , Parques Recreativos
3.
Conserv Biol ; 23(5): 1080-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19549219

RESUMO

The scientific literature contains numerous descriptions of observed and potential effects of global climate change on species and ecosystems. In response to anticipated effects of climate change, conservation organizations and government agencies are developing "adaptation strategies" to facilitate the adjustment of human society and ecological systems to altered climate regimes. We reviewed the literature and climate-change adaptation plans that have been developed in United States, Canada, England, México, and South Africa and found 16 general adaptation strategies that relate directly to the conservation of biological diversity. These strategies can be grouped into four broad categories: land and water protection and management; direct species management; monitoring and planning; and law and policy. Tools for implementing these strategies are similar or identical to those already in use by conservationists worldwide (land and water conservation, ecological restoration, agrienvironment schemes, species translocation, captive propagation, monitoring, natural resource planning, and legislation/regulation). Although our review indicates natural resource managers already have many tools that can be used to address climate-change effects, managers will likely need to apply these tools in novel and innovative ways to meet the unprecedented challenges posed by climate change.


Assuntos
Adaptação Fisiológica , Animais Selvagens , Biodiversidade , Clima , Conservação dos Recursos Naturais/métodos , Animais , Ecologia , Meio Ambiente , Monitoramento Ambiental , Extinção Biológica , Humanos
4.
Oecologia ; 160(2): 321-33, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19259704

RESUMO

In semi-arid regions, where plants using both C(3) and C(4) photosynthetic pathways are common, the stable C isotope ratio (delta(13)C) of ecosystem respiration (delta(13)C(R)) is strongly variable seasonally and inter-annually. Improved understanding of physiological and environmental controls over these variations will improve C cycle models that rely on the isotopic composition of atmospheric CO(2). We hypothesized that timing of precipitation events and antecedent moisture interact with activity of C(3) and C(4) grasses to determine net ecosystem CO(2) exchange (NEE) and delta(13)C(R). Field measurements included CO(2) and delta(13)C fluxes from the whole ecosystem and from patches of different plant communities, biomass and delta(13)C of plants and soils over the 2000 and 2001 growing seasons. NEE shifted from C source to sink in response to rainfall events, but this shift occurred after a time lag of up to 2 weeks if a dry period preceded the rainfall. The seasonal average of delta(13)C(R) was higher in 2000 (-16 per thousand) than 2001 (20 per thousand), probably due to drier conditions during the 2000 growing season (79.7 mm of precipitation from April up to and including July) than in 2001 (189 mm). During moist conditions, delta(13)C averaged -22 per thousand from C(3) patches, -16 per thousand from C(4) patches, and -19 per thousand from mixed C(3) and C(4) patches. However, during dry conditions the apparent spatial differences were not obvious, suggesting reduced autotrophic activity in C(4) grasses with shallow rooting depth, soon after the onset of dry conditions. Air and soil temperatures were negatively correlated with delta(13)C(R); vapor pressure deficit was a poor predictor of delta(13)C(R), in contrast to more mesic ecosystems. Responses of respiration components to precipitation pulses were explained by differences in soil moisture thresholds between C(3) and C(4) species. Stable isotopic composition of respiration in semi-arid ecosystems is more temporally and spatially variable than in mesic ecosystems owing to dynamic aspects of pulse precipitation episodes and biological drivers.


Assuntos
Dióxido de Carbono/metabolismo , Ecossistema , Fotossíntese/fisiologia , Poaceae/fisiologia , Biomassa , Isótopos de Carbono/metabolismo , Colorado , Modelos Lineares , Chuva , Estações do Ano , Temperatura
5.
Ecol Appl ; 17(8): 2387-402, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18213977

RESUMO

In the western United States, forest ecosystems are subject to a variety of forcing mechanisms that drive dynamics, including climate change, land-use/land-cover change, atmospheric pollution, and disturbance. To understand the impacts of these stressors, it is crucial to develop assessments of forest properties to establish baselines, determine the extent of changes, and provide information to ecosystem modeling activities. Here we report on spatial patterns of characteristics of forest ecosystems in the western United States, including area, stand age, forest type, and carbon stocks, and comparisons of these patterns with those from satellite imagery and simulation models. The USDA Forest Service collected ground-based measurements of tree and plot information in recent decades as part of nationwide forest inventories. Using these measurements together with a methodology for estimating carbon stocks for each tree measured, we mapped county-level patterns across the western United States. Because forest ecosystem properties are often significantly different between hardwood and softwood species, we describe patterns of each. The stand age distribution peaked at 60-100 years across the region, with hardwoods typically younger than softwoods. Forest carbon density was highest along the coast region of northern California, Oregon, and Washington and lowest in the arid regions of the Southwest and along the edge of the Great Plains. These results quantify the spatial variability of forest characteristics important for understanding large-scale ecosystem processes and their controlling mechanisms. To illustrate other uses of the inventory-derived forest characteristics, we compared them against examples of independently derived estimates. Forest cover compared well with satellite-derived values when only productive stands were included in the inventory estimates. Forest types derived from satellite observations were similar to our inventory results, though the inventory database suggested more heterogeneity. Carbon stocks from the Century model were in good agreement with inventory results except in the Pacific Northwest and part of the Sierra Nevada, where it appears that harvesting and fire in the 20th century (processes not included in the model runs) reduced measured stand ages and carbon stocks compared to simulations.


Assuntos
Ecossistema , Árvores , Conservação dos Recursos Naturais , Agricultura Florestal , Fatores de Tempo , Estados Unidos
7.
Oecologia ; 114(3): 389-404, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28307783

RESUMO

Although there is a great deal of information concerning responses to increases in atmospheric CO2 at the tissue and plant levels, there are substantially fewer studies that have investigated ecosystem-level responses in the context of integrated carbon, water, and nutrient cycles. Because our understanding of ecosystem responses to elevated CO2 is incomplete, modeling is a tool that can be used to investigate the role of plant and soil interactions in the response of terrestrial ecosystems to elevated CO2. In this study, we analyze the responses of net primary production (NPP) to doubled CO2 from 355 to 710 ppmv among three biogeochemistry models in the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP): BIOME-BGC (BioGeochemical Cycles), Century, and the Terrestrial Ecosystem Model (TEM). For the conterminous United States, doubled atmospheric CO2 causes NPP to increase by 5% in Century, 8% in TEM, and 11% in BIOME-BGC. Multiple regression analyses between the NPP response to doubled CO2 and the mean annual temperature and annual precipitation of biomes or grid cells indicate that there are negative relationships between precipitation and the response of NPP to doubled CO2 for all three models. In contrast, there are different relationships between temperature and the response of NPP to doubled CO2 for the three models: there is a negative relationship in the responses of BIOME-BGC, no relationship in the responses of Century, and a positive relationship in the responses of TEM. In BIOME-BGC, the NPP response to doubled CO2 is controlled by the change in transpiration associated with reduced leaf conductance to water vapor. This change affects soil water, then leaf area development and, finally, NPP. In Century, the response of NPP to doubled CO2 is controlled by changes in decomposition rates associated with increased soil moisture that results from reduced evapotranspiration. This change affects nitrogen availability for plants, which influences NPP. In TEM, the NPP response to doubled CO2 is controlled by increased carboxylation which is modified by canopy conductance and the degree to which nitrogen constraints cause down-regulation of photosynthesis. The implementation of these different mechanisms has consequences for the spatial pattern of NPP responses, and represents, in part, conceptual uncertainty about controls over NPP responses. Progress in reducing these uncertainties requires research focused at the ecosystem level to understand how interactions between the carbon, nitrogen, and water cycles influence the response of NPP to elevated atmospheric CO2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA