RESUMO
Extranodal NK/T-cell lymphoma (ENKTCL) is an Epstein-Barr virus (EBV)-related neoplasm preferentially involving the upper aerodigestive tract. Here we show that NK-cell-specific Trp53 disruption in mice leads to the development of NK-cell lymphomas after long latency, which involve not only the hematopoietic system but also the salivary glands. Before tumor onset, Trp53 knockout causes extensive gene expression changes, resulting in immature NK-cell expansion, exclusively in the salivary glands. Both human and murine NK-cell lymphomas express tissue-resident markers, suggesting tissue-resident NK cells as their cell-of-origin. Murine NK-cell lymphomas show recurrent Myc amplifications and upregulation of MYC target gene signatures. EBV-encoded latent membrane protein 1 expression accelerates NK-cell lymphomagenesis and causes diverse microenvironmental changes, particularly myeloid propagation, through interferon-γ signaling. In turn, myeloid cells support tumor cells via CXCL16-CXCR6 signaling and its inhibition is effective against NK-cell tumors in vivo. Remarkably, KLRG1-expressing cells expand in the tumor and are capable of repopulating tumors in secondary recipients. Furthermore, targeting KLRG1 alone or combined with MYC inhibition using an eIF4 inhibitor is effective against NK-cell tumors. Therefore, our observations provide insights into the pathogenesis and highlight potential therapeutic targets, including CXCL16, KLRG1, and MYC, in ENKTCL, which can help improve its diagnostic and therapeutic strategies.
Assuntos
Células Matadoras Naturais , Linfoma Extranodal de Células T-NK , Proteínas Proto-Oncogênicas c-myc , Microambiente Tumoral , Proteína Supressora de Tumor p53 , Animais , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Camundongos , Microambiente Tumoral/imunologia , Linfoma Extranodal de Células T-NK/genética , Linfoma Extranodal de Células T-NK/metabolismo , Linfoma Extranodal de Células T-NK/virologia , Linfoma Extranodal de Células T-NK/patologia , Humanos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Camundongos Knockout , Modelos Animais de Doenças , Interferon gama/metabolismo , Receptores CXCR6/metabolismo , Receptores CXCR6/genética , Quimiocina CXCL16/metabolismo , Quimiocina CXCL16/genética , Herpesvirus Humano 4 , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais , Glândulas Salivares/patologia , Glândulas Salivares/metabolismo , Células Mieloides/metabolismo , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BLAssuntos
Rearranjo Gênico , Histona-Lisina N-Metiltransferase , Leucemia Mieloide Aguda , Mutação , Proteína de Leucina Linfoide-Mieloide , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteína de Leucina Linfoide-Mieloide/genética , Leucemia Mieloide Aguda/genética , Histona-Lisina N-Metiltransferase/genética , Prognóstico , Proteínas Proto-Oncogênicas p21(ras)/genética , Feminino , Pessoa de Meia-Idade , Masculino , Adulto , Idoso , Adulto JovemRESUMO
Extranodal NK/T-cell lymphoma (ENKTCL) is an Epstein-Barr virus (EBV)-related neoplasm with male dominance and a poor prognosis. A better understanding of the genetic alterations and their functional roles in ENKTCL could help improve patient stratification and treatments. In this study, we performed a comprehensive genetic analysis of 178 ENKTCL cases to delineate the landscape of mutations, copy number alterations (CNA), and structural variations, identifying 34 driver genes including six previously unappreciated ones, namely, HLA-B, HLA-C, ROBO1, CD58, POT1, and MAP2K1. Among them, CD274 (24%) was the most frequently altered, followed by TP53 (20%), CDKN2A (19%), ARID1A (15%), HLA-A (15%), BCOR (14%), and MSN (14%). Chromosome X losses were the most common arm-level CNAs in females (â¼40%), and alterations of four X-linked driver genes (MSN, BCOR, DDX3X, and KDM6A) were more frequent in males and females harboring chromosome X losses. Among X-linked drivers, MSN was the most recurrently altered, and its expression was lost in approximately one-third of cases using immunohistochemical analysis. Functional studies of human cell lines showed that MSN disruption promoted cell proliferation and NF-κB activation. Moreover, MSN inactivation increased sensitivity to NF-κB inhibition in vitro and in vivo. In addition, recurrent deletions were observed at the origin of replication in the EBV genome (6%). Finally, by integrating the 34 drivers and 19 significant arm-level CNAs, nonnegative matrix factorization and consensus clustering identified two molecular groups with different genetic features and prognoses irrespective of clinical prognostic factors. Together, these findings could help improve diagnostic and therapeutic strategies in ENKTCL. Significance: Integrative genetic analyses and functional studies in extranodal NK/T-cell lymphoma identify frequent disruptions of X-linked drivers, reveal prognostic molecular subgroups, and uncover recurrent MSN alterations that confer sensitivity to NF-κB inhibition.
Assuntos
Cromossomos Humanos X , Linfoma Extranodal de Células T-NK , Humanos , Masculino , Feminino , Cromossomos Humanos X/genética , Linfoma Extranodal de Células T-NK/genética , Linfoma Extranodal de Células T-NK/virologia , Linfoma Extranodal de Células T-NK/patologia , Linfoma Extranodal de Células T-NK/metabolismo , Variações do Número de Cópias de DNA , Mutação , Pessoa de Meia-Idade , Animais , Adulto , Camundongos , Prognóstico , Idoso , Perfilação da Expressão Gênica , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Adulto Jovem , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/virologia , Infecções por Vírus Epstein-Barr/complicaçõesRESUMO
Innovations in sequencing technology have led to the discovery of novel mutations that cause inherited diseases. However, many patients with suspected genetic diseases remain undiagnosed. Long-read sequencing technologies are expected to significantly improve the diagnostic rate by overcoming the limitations of short-read sequencing. In addition, Oxford Nanopore Technologies (ONT) offers adaptive sampling and computationally driven target enrichment technology. This enables more affordable intensive analysis of target gene regions compared to standard non-selective long-read sequencing. In this study, we developed an efficient computational workflow for target adaptive sampling long-read sequencing (TAS-LRS) and evaluated it through application to 33 genomes collected from suspected hereditary cancer patients. Our workflow can identify single nucleotide variants with nearly the same accuracy as the short-read platform and elucidate complex forms of structural variations. We also newly identified several SINE-R/VNTR/Alu (SVA) elements affecting the APC gene in two patients with familial adenomatous polyposis, as well as their sites of origin. In addition, we demonstrated that off-target reads from adaptive sampling, which is typically discarded, can be effectively used to accurately genotype common single-nucleotide polymorphisms (SNPs) across the entire genome, enabling the calculation of a polygenic risk score. Furthermore, we identified allele-specific MLH1 promoter hypermethylation in a Lynch syndrome patient. In summary, our workflow with TAS-LRS can simultaneously capture monogenic risk variants including complex structural variations, polygenic background as well as epigenetic alterations, and will be an efficient platform for genetic disease research and diagnosis.
RESUMO
Patients with von Hippel-Lindau disease (vHL) are at risk of developing spatially and temporally multiple clear cell renal cell carcinomas (ccRCCs), which offers a valuable opportunity to analyze inter- and intra-tumor heterogeneity of genetic and immune profiles within the same patient. Here, we perform whole-exome and RNA sequencing, digital gene expression, and immunohistochemical analyses for 81 samples from 51 ccRCCs of 10 patients with vHL. Inherited ccRCCs are clonally independent and have less genomic alterations than sporadic ccRCCs. Hierarchical clustering of transcriptome profiles shows two clusters with distinct immune signatures: immune hot and cold clusters. Interestingly, not only samples from the same tumors but also different tumors from the same patients tend to show a similar immune signature, whereas samples from different patients frequently exhibit different signatures. Our findings reveal the genetic and immune landscape of inherited ccRCCs, demonstrating the relevance of host factors in shaping anti-tumor immunity.
Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Doença de von Hippel-Lindau , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Doença de von Hippel-Lindau/genética , Doença de von Hippel-Lindau/patologia , Sequência de Bases , Carcinoma/genética , MutaçãoRESUMO
We present our novel software, nanomonsv, for detecting somatic structural variations (SVs) using tumor and matched control long-read sequencing data with a single-base resolution. The current version of nanomonsv includes two detection modules, Canonical SV module, and Single breakend SV module. Using tumor/control paired long-read sequencing data from three cancer and their matched lymphoblastoid lines, we demonstrate that Canonical SV module can identify somatic SVs that can be captured by short-read technologies with higher precision and recall than existing methods. In addition, we have developed a workflow to classify mobile element insertions while elucidating their in-depth properties, such as 5' truncations, internal inversions, as well as source sites for 3' transductions. Furthermore, Single breakend SV module enables the detection of complex SVs that can only be identified by long-reads, such as SVs involving highly-repetitive centromeric sequences, and LINE1- and virus-mediated rearrangements. In summary, our approaches applied to cancer long-read sequencing data can reveal various features of somatic SVs and will lead to a better understanding of mutational processes and functional consequences of somatic SVs.
Assuntos
Variação Estrutural do Genoma , Neoplasias , Software , Humanos , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Neoplasias/genética , Análise de Sequência de DNA/métodosRESUMO
Many disease-associated genomic variants disrupt gene function through abnormal splicing. With the advancement of genomic medicine, identifying disease-associated splicing associated variants has become more important than ever. Most bioinformatics approaches to detect splicing associated variants require both genome and transcriptomic data. However, there are not many datasets where both of them are available. In this study, we develop a methodology to detect genomic variants that cause splicing changes (more specifically, intron retention), using transcriptome sequencing data alone. After evaluating its sensitivity and precision, we apply it to 230,988 transcriptome sequencing data from the publicly available repository and identified 27,049 intron retention associated variants (IRAVs). In addition, by exploring positional relationships with variants registered in existing disease databases, we extract 3,000 putative disease-associated IRAVs, which range from cancer drivers to variants linked with autosomal recessive disorders. The in-silico screening framework demonstrates the possibility of near-automatically acquiring medical knowledge, making the most of massively accumulated publicly available sequencing data. Collections of IRAVs identified in this study are available through IRAVDB ( https://iravdb.io/ ).
Assuntos
Splicing de RNA , Transcriptoma , Íntrons/genética , Levamisol/análogos & derivados , Mutação , Splicing de RNA/genética , Transcriptoma/genética , Sequenciamento do ExomaRESUMO
Ferrets are animals that are known to be susceptible to influenza A virus (IAV) infection. To evaluate the risk of IAV transmission from diseased ferrets to humans, a survey was performed to detect specific antibodies against the H1, H3, H5, and H7 subtypes of IAV. Using enzyme-linked immunosorbent assay for hemagglutinin proteins, we found a high positive rate for the H1 (24.1%) and H3 (5.2%) subtypes. The results were confirmed by a virus neutralization test for representative antibody-positive serum samples. We also detected hemagglutinin and neuraminidase genes in two ferrets showing acute respiratory disease and whose owner was diagnosed with IAV infection; a human H1N1pdm virus was isolated from one of these ferrets. Our findings suggest that attention should be paid to IAV infection from humans to ferrets and vice versa.
Assuntos
Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Anticorpos Antivirais , Furões/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Hemaglutininas , Humanos , Vírus da Influenza A/genética , Infecções por Orthomyxoviridae/veterináriaRESUMO
Due to the considerable success of cancer immunotherapy for leukemia, the tumor immune environment has become a focus of intense research; however, there are few reports on the dynamics of the tumor immune environment in leukemia. Here, we analyzed the tumor immune environment in pediatric B cell precursor acute lymphoblastic leukemia by analyzing serial bone marrow samples from nine patients with primary and recurrent disease by mass cytometry using 39 immunophenotype markers, and transcriptome analysis. High-dimensional single-cell mass cytometry analysis elucidated a dynamic shift of T cells from naïve to effector subsets, and clarified that, during relapse, the tumor immune environment comprised a T helper 1-polarized immune profile, together with an increased number of effector regulatory T cells. These results were confirmed in a validation cohort using conventional flow cytometry. Furthermore, RNA transcriptome analysis identified the upregulation of immune-related pathways in B cell precursor acute lymphoblastic leukemia cells during relapse, suggesting interaction with the surrounding environment. In conclusion, a tumor immune environment characterized by a T helper 1-polarized immune profile, with an increased number of effector regulatory T cells, could contribute to the pathophysiology of recurrent B cell precursor acute lymphoblastic leukemia. This information could contribute to the development of effective immunotherapeutic approaches against B cell precursor acute lymphoblastic leukemia relapse.
Assuntos
Biomarcadores Tumorais/genética , Medula Óssea/imunologia , Perfilação da Expressão Gênica/métodos , Recidiva Local de Neoplasia/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Adolescente , Medula Óssea/química , Criança , Pré-Escolar , Feminino , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Humanos , Lactente , Masculino , Recidiva Local de Neoplasia/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Análise de Sequência de RNA , Análise de Célula Única , Microambiente Tumoral , Regulação para Cima , Adulto JovemRESUMO
Adult T-cell leukemia/lymphoma (ATL) is an aggressive neoplasm immunophenotypically resembling regulatory T cells, associated with human T-cell leukemia virus type-1. Here, we performed whole-genome sequencing (WGS) of 150 ATL cases to reveal the overarching landscape of genetic alterations in ATL. We discovered frequent (33%) loss-of-function alterations preferentially targeting the CIC long isoform, which were overlooked by previous exome-centric studies of various cancer types. Long but not short isoform-specific inactivation of Cic selectively increased CD4+CD25+Foxp3+ T cells in vivo. We also found recurrent (13%) 3'-truncations of REL, which induce transcriptional upregulation and generate gain-of-function proteins. More importantly, REL truncations are also common in diffuse large B-cell lymphoma, especially in germinal center B-cell-like subtype (12%). In the non-coding genome, we identified recurrent mutations in regulatory elements, particularly splice sites, of several driver genes. In addition, we characterized the different mutational processes operative in clustered hypermutation sites within and outside immunoglobulin/T-cell receptor genes and identified the mutational enrichment at the binding sites of host and viral transcription factors, suggesting their activities in ATL. By combining the analyses for coding and noncoding mutations, structural variations, and copy number alterations, we discovered 56 recurrently altered driver genes, including 11 novel ones. Finally, ATL cases were classified into 2 molecular groups with distinct clinical and genetic characteristics based on the driver alteration profile. Our findings not only help to improve diagnostic and therapeutic strategies in ATL, but also provide insights into T-cell biology and have implications for genome-wide cancer driver discovery.
Assuntos
Ataxina-1/genética , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Leucemia-Linfoma de Células T do Adulto/patologia , Mutação , Proteínas Proto-Oncogênicas c-rel/genética , Proteínas Repressoras/genética , Animais , Variações do Número de Cópias de DNA , Feminino , Genoma Humano , Humanos , Leucemia-Linfoma de Células T do Adulto/genética , Camundongos , Camundongos Endogâmicos C57BL , Prognóstico , Taxa de Sobrevida , Sequenciamento do ExomaRESUMO
Rabbit hepatitis E virus (HEV) has been detected among rabbits and recently isolated from immunocompromised patients, suggesting zoonotic transmission. In this study, HEV infection among feral rabbits (Oryctolagus cuniculus) was assessed by detection of anti-HEV antibodies and HEV RNA. The prevalence of anti-HEV antibodies in sera was of 33 % (20/60) and HEV RNA was detected from only one of fecal swabs (1.7 %, 1/58). Furthermore, one naïve rabbit was intravenously inoculated with the suspension of the HEV-positive fecal specimen, exhibiting persistent HEV shedding in feces, intermittent viremia, seroconversion to anti-HEV IgM and IgG, and high alanine aminotransferase (ALT) values, indicating persistent HEV infection. The isolate JP-59 had a length of 7,282 bp excluding a poly (A) tail and possessed the characteristic 93 bp-insertion in ORF1. Phylogenetic analysis indicated that JP-59 formed a cluster with other rabbit HEV isolates from rabbits and human origin. The JP-59 shared the nucleotide sequence identities less than 87 % with other rabbit HEVs, suggesting that a novel rabbit HEV strain was circulating in Japan.
Assuntos
Vírus da Hepatite E , Hepatite E , Animais , Anticorpos Anti-Hepatite/sangue , Hepatite E/epidemiologia , Hepatite E/veterinária , Vírus da Hepatite E/classificação , Vírus da Hepatite E/genética , Vírus da Hepatite E/imunologia , Vírus da Hepatite E/isolamento & purificação , Japão/epidemiologia , Filogenia , RNA Viral/genética , CoelhosRESUMO
Mixed-lineage leukemia (MLL) gene rearrangements are among the most frequent chromosomal abnormalities in acute myeloid leukemia (AML). MLL fusion patterns are associated with the patient's prognosis; however, their relationship with driver mutations is unclear. We conducted sequence analyses of 338 genes in pediatric patients with MLL-rearranged (MLL-r) AML (n = 56; JPLSG AML-05 study) alongside data from the TARGET study's pediatric cohorts with MLL-r AML (n = 104), non-MLL-r AML (n = 581), and adult MLL-r AML (n = 81). KRAS mutations were most frequent in pediatric patients with high-risk MLL fusions (MLL-MLLLT10, MLL-MLLT4, and MLL-MLLT1). Pediatric patients with MLL-r AML (n = 160) and a KRAS mutation (KRAS-MT) had a significantly worse prognosis than those without a KRAS mutation (KRAS-WT) (5-year event-free survival [EFS]: 51.8% vs 18.3%, P < .0001; 5-year overall survival [OS]: 67.3% vs 44.3%, P = .003). The adverse prognostic impact of KRAS mutations was confirmed in adult MLL-r AML. KRAS mutations were associated with adverse prognoses in pediatric patients with both high-risk (MLLT10+MLLT4+MLLT1; n = 60) and intermediate-to-low-risk (MLLT3+ELL+others; n = 100) MLL fusions. The prognosis did not differ significantly between patients with non-MLL-r AML with KRAS-WT or KRAS-MT. Multivariate analysis showed the presence of a KRAS mutation to be an independent prognostic factor for EFS (hazard ratio [HR], 2.21; 95% confidence interval [CI], 1.35-3.59; P = .002) and OS (HR, 1.85; 95% CI, 1.01-3.31; P = .045) in MLL-r AML. The mutation is a distinct adverse prognostic factor in MLL-r AML, regardless of risk subgroup, and is potentially useful for accurate treatment stratification. This trial was registered at the UMIN (University Hospital Medical Information Network) Clinical Trials Registry (UMIN-CTR; http://www.umin.ac.jp/ctr/index.htm) as #UMIN000000511.
Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas p21(ras) , Adulto , Criança , Histona-Lisina N-Metiltransferase/genética , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Mutação , Proteína de Leucina Linfoide-Mieloide/genética , Prognóstico , Proteínas Proto-Oncogênicas p21(ras)/genéticaRESUMO
In acute myeloid leukemia (AML), MLL (KMT2A) rearrangements are among the most frequent chromosomal abnormalities; however, knowledge of the genetic landscape of MLL-rearranged AML is limited. In this study, we performed whole-exome sequencing (n = 9) and targeted sequencing (n = 56) of samples from pediatric MLL-rearranged AML patients enrolled in the Japanese Pediatric Leukemia/Lymphoma Study Group AML-05 study. Additionally, we analyzed 105 pediatric t(8;21) AML samples and 30 adult MLL-rearranged AML samples. RNA-sequencing data from 31 patients published in a previous study were also reanalyzed. As a result, we identified 115 mutations in pediatric MLL-rearranged AML patients (2.1 mutations/patient), with mutations in signaling pathway genes being the most frequently detected (60.7%). Mutations in genes associated with epigenetic regulation (21.4%), transcription factors (16.1%), and the cohesin complex (8.9%) were also commonly detected. Novel CCND3 mutations were identified in 5 pediatric MLL-rearranged AML patients (8.9%) and 2 adult MLL-rearranged AML patients (3.3%). Recurrent mutations of CCND1 (n = 3, 2.9%) and CCND2 (n = 8, 7.6%) were found in pediatric t(8;21) AML patients, whereas no CCND3 mutations were found, suggesting that D-type cyclins exhibit a subtype-specific mutation pattern in AML. Treatment of MLL-rearranged AML cell lines with CDK4/6 inhibitors (abemaciclib and palbociclib) blocked G1 to S phase cell-cycle progression and impaired proliferation. Pediatric MLL-MLLT3-rearranged AML patients with coexisting mutations (n = 16) had significantly reduced relapse-free survival and overall survival compared with those without coexisting mutations (n = 9) (P = .048 and .046, respectively). These data provide insights into the genetics of MLL-rearranged AML and suggest therapeutic strategies.
Assuntos
Ciclina D3/genética , Histona-Lisina N-Metiltransferase/genética , Leucemia Mieloide Aguda/patologia , Proteína de Leucina Linfoide-Mieloide/genética , Adolescente , Criança , Pré-Escolar , Ciclina D/genética , Ciclina D3/antagonistas & inibidores , Ciclina D3/metabolismo , Variações do Número de Cópias de DNA , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Rearranjo Gênico , Humanos , Lactente , Recém-Nascido , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidade , Masculino , Mutação , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Recidiva , Taxa de SobrevidaRESUMO
Although many driver mutations are thought to promote carcinogenesis via abnormal splicing, the landscape of splicing-associated variants (SAVs) remains unknown due to the complexity of splicing abnormalities. Here, we developed a statistical framework to systematically identify SAVs disrupting or newly creating splice site motifs and applied it to matched whole-exome and transcriptome sequencing data from 8976 samples across 31 cancer types, generating a catalog of 14,438 SAVs. Such a large collection of SAVs enabled us to characterize their genomic features, underlying mutational processes, and influence on cancer driver genes. In fact, â¼50% of SAVs identified were those disrupting noncanonical splice sites (non-GT-AG dinucleotides), including the third and fifth intronic bases of donor sites, or newly creating splice sites. Mutation signature analysis revealed that tobacco smoking is more strongly associated with SAVs, whereas ultraviolet exposure has less impact. SAVs showed remarkable enrichment of cancer-related genes, and as many as 14.7% of samples harbored at least one SAVs affecting them, particularly in tumor suppressors. In addition to intron retention, whose association with tumor suppressor inactivation has been previously reported, exon skipping and alternative splice site usage caused by SAVs frequently affected tumor suppressors. Finally, we described high-resolution distributions of SAVs along the gene and their splicing outcomes in commonly disrupted genes, including TP53, PIK3R1, GATA3, and CDKN2A, which offers genetic clues for understanding their functional properties. Collectively, our findings delineate a comprehensive portrait of SAVs, novel insights into transcriptional de-regulation in cancer.