Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Org Lett ; 22(21): 8430-8435, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33085486

RESUMO

We report an alternative approach to the unnatural nucleobase fragment seen in remdesivir (Veklury). Remdesivir displays broad-spectrum antiviral activity and is currently being evaluated in Phase III clinical trials to treat patients with COVID-19. Our route relies on the formation of a cyanoamidine intermediate, which undergoes Lewis acid-mediated cyclization to yield the desired nucleobase. The approach is strategically distinct from prior routes and could further enable the synthesis of remdesivir and other small-molecule therapeutics.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Amidinas/química , Antivirais/química , Antivirais/síntese química , Monofosfato de Adenosina/síntese química , Monofosfato de Adenosina/química , Monofosfato de Adenosina/uso terapêutico , Alanina/síntese química , Alanina/química , Alanina/uso terapêutico , Antivirais/uso terapêutico , COVID-19 , Técnicas de Química Sintética , Infecções por Coronavirus/tratamento farmacológico , Ciclização , Pandemias , Pneumonia Viral/tratamento farmacológico
2.
ACS Cent Sci ; 6(7): 1017-1030, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32719821

RESUMO

The SARS-CoV-2 pandemic has prompted scientists from many disciplines to work collaboratively toward an effective response. As academic synthetic chemists, we examine how best to contribute to this ongoing effort.

3.
Org Lett ; 21(2): 559-562, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30620206

RESUMO

The asymmetric total synthesis of laurallene was achieved in 13 steps for the longest linear sequence with 3.3% overall yield from commercially available trans-2-pentenal. This synthesis features the highly efficient construction of a branched ether system with five oxygenated asymmetric stereocenters by the combination of a palladium-catalyzed alkoxy substitution reaction and a cobalt-catalyzed Mukaiyama oxidative cyclization.

4.
IUCrJ ; 5(Pt 2): 158-165, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29765605

RESUMO

The crystal structure of the excitonic insulator Ta2NiSe5 has been investigated under a range of pressures, as determined by the complementary analysis of both single-crystal and powder synchrotron X-ray diffraction measurements. The monoclinic ambient-pressure excitonic insulator phase II transforms upon warming or under a modest pressure to give the semiconducting C-centred orthorhombic phase I. At higher pressures (i.e. >3 GPa), transformation to the primitive orthorhombic semimetal phase III occurs. This transformation from phase I to phase III is a pressure-induced first-order phase transition, which takes place through coherent sliding between weakly coupled layers. This structural phase transition is significantly influenced by Coulombic interactions in the geometric arrangement between interlayer Se ions. Furthermore, upon cooling, phase III transforms into the monoclinic phase IV, which is analogous to the excitonic insulator phase II. Finally, the excitonic interactions appear to be retained despite the observed layer sliding transition.

5.
Inorg Chem ; 55(22): 12093-12099, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27801587

RESUMO

The effect of lanthanoid (Ln = Nd, Sm, Ho) substitution on the structural and physical properties of the infinite-layer iron oxide SrFeO2 was investigated by X-ray diffraction (XRD) at ambient and high pressure, neutron diffraction, and 57Fe Mössbauer spectroscopy. Ln for Sr substituted samples up to ∼30% were synthesized by topochemical reduction using CaH2. While the introduction of the smaller Ln3+ ion reduces the a axis as expected, we found an unusual expansion of the c axis as well as the volume. Rietveld refinements along with pair distribution function analysis revealed the incorporation of oxygen atoms between FeO2 layers with a charge-compensated composition of (Sr1-xLnx)FeO2+x/2, which accounts for the failed electron doping to the FeO2 layer. The incorporated partial apical oxygen or the pyramidal coordination induces incoherent buckling of the FeO2 sheet, leading to a significant reduction of the Néel temperature. High-pressure XRD experiments for (Sr0.75Ho0.25)FeO2.125 suggest a possible stabilization of an intermediate spin state in comparison with SrFeO2, revealing a certain contribution of the in-plane Fe-O distance to the pressure-induced transition.

6.
Sci Rep ; 4: 5778, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25047728

RESUMO

It was discovered that a peak appears near a pressure of Pc = 10 GPa in the electrical conductivity of ice VII as measured through impedance spectroscopy in a diamond anvil cell (DAC) during the process of compression from 2 GPa to 40 GPa at room temperature. The activation energy for the conductivity measured in the cooling/heating process between 278 K and 303 K reached a minimum near Pc. Theoretical modelling and molecular dynamics simulations suggest that the origin of this unique peak is the transition of the major charge carriers from the rotational defects to the ionic defects.

7.
Inorg Chem ; 50(22): 11787-94, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22017525

RESUMO

The rock salt (B1) structure of binary oxides or chalcogenides transforms to the CsCl (B2) structure under high pressure, with critical pressures P(s) depending on the cation to anion size ratio (R(c)/R(a)). We investigated structural changes of A(2)MO(3) (A = Sr, Ca; M = Cu, Pd) comprising alternate 7-fold B1 AO blocks and corner-shared MO(2) square-planar chains under pressure. All of the examined compounds exhibit a structural transition at P(s) = 29-41 GPa involving a change in the A-site geometry to an 8-fold B2 coordination. This observation demonstrates, together with the high pressure study on the structurally related Sr(3)Fe(2)O(5), that the B1-to-B2 transition generally occurs in these intergrowth structures. An empirical relation of P(s) and the R(c)/R(a) ratio for the binary system holds well for the intergrowth structure also, which means that P(s) is predominantly determined by the rock salt blocks. However, a large deviation from the relation is found in LaSrNiO(3.4), where oxygen atoms partially occupy the apical site of the MO(4) square plane. We predict furthermore the occurrence of the same structural transition for Ruddlesden-Popper-type layered perovskite oxides (AO)(AMO(3))(n), under higher pressures. For investigating the effect on the physical properties, an electrical resistivity of Sr(2)CuO(3) is studied.


Assuntos
Óxidos/química , Sais/química , Cálcio/química , Césio/química , Cloretos/química , Cobre/química , Cristalografia por Raios X , Modelos Moleculares , Paládio/química , Pressão , Estrôncio/química
8.
Inorg Chem ; 50(8): 3281-5, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21405026

RESUMO

The binary skutterudite CoP(3) has a large void at the body-centered site of each cubic unit cell and is, therefore, called a nonfilled skutterudite. We investigated its room-temperature compression behavior up to 40.4 GPa in helium and argon using a diamond-anvil cell. High-pressure in situ X-ray diffraction and Raman scattering measurements found no phase transition and a stable cubic structure up to the maximum pressure in both media. A fitting of the present pressure-volume data to the third-order Birch-Murnaghan equation of state yields a zero-pressure bulk modulus K(0) of 147(3) GPa [pressure derivative K(0)' of 4.4(2)] and 171(5) GPa [where K(0)' = 4.2(4)] in helium and argon, respectively. The Grüneisen parameter was determined to be 1.4 from the Raman scattering measurements. Thus, CoP(3) is stiffer than other binary skutterudites and could therefore be used as a host cage to accommodate large atoms under high pressure without structural collapse.

9.
J Am Chem Soc ; 133(15): 6036-43, 2011 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-21438555

RESUMO

The layered compound SrFeO(2) with an FeO(4) square-planar motif exhibits an unprecedented pressure-induced spin state transition (S = 2 to 1), together with an insulator-to-metal (I-M) and an antiferromagnetic-to-ferromagnetic (AFM-FM) transition. In this work, we have studied the pressure effect on the structural, magnetic, and transport properties of the structurally related two-legged spin ladder Sr(3)Fe(2)O(5). When pressure was applied, this material first exhibited a structural transition from Immm to Ammm at P(s) = 30 ± 2 GPa. This transition involves a phase shift of the ladder blocks from (1/2,1/2,1/2) to (0,1/2,1/2), by which a rock-salt type SrO block with a 7-fold coordination around Sr changes into a CsCl-type block with 8-fold coordination, allowing a significant reduction of volume. However, the S = 2 antiferromagnetic state stays the same. Next, a spin state transition from S = 2 to S = 1, along with an AFM-FM transition, was observed at P(c) = 34 ± 2 GPa, similar to that of SrFeO(2). A sign of an I-M transition was also observed at pressure around P(c). These results suggest a generality of the spin state transition in square planar coordinated S = 2 irons of n-legged ladder series Sr(n+1)Fe(n)O(2n+1) (n = 1, 2, 3, ...). It appears that the structural transition independently occurs without respect to other transitions. The necessary conditions for a structural transition of this type and possible candidate materials are discussed.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 61(10): 2423-7, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16029865

RESUMO

In situ Raman spectroscopic measurements of water in the region of OH vibration were conducted up to 0.4 GPa at 23 and 52 degrees C. The frequencies of the decomposed OH stretching bands initially decreased with increasing pressure, reached a minimum at 0.15 GPa and increased up to 0.3 GPa and then decreased, which corresponds to the variations of the strength of hydrogen bonding. This variation was observed at 23 degrees C, but not at 52 degrees C, which suggests a change in pressure dependence on the hydrogen bond interaction between these two temperatures. Based on the equilibration model between hydrogen-bonded and nonhydrogen-bonded molecules, the present experimental results indicate that the pressure variation of the viscosity depends on the ratio of hydrogen-bonded molecules, rather than the strength of hydrogen bonding between molecules.


Assuntos
Análise Espectral Raman , Água/química , Ligação de Hidrogênio , Pressão , Temperatura
11.
J Chem Phys ; 120(23): 11196-9, 2004 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15268149

RESUMO

The location of the liquidus in the low-pressure crystalline phase of SnI(4) was determined utilizing in situ x-ray diffraction measurements under pressures up to approximately 3.5 GPa. The liquidus is not well fitted to a monotonically increasing curve such as Simon's equation, but breaks near 1.5 GPa and then becomes almost flat. The results are compared to those from molecular dynamics simulations. Ways to improve the model potential adopted in the simulations are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA