Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Sci Rep ; 14(1): 5701, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459078

RESUMO

Obesity is among the risk factors for male infertility. Although several mechanisms underlying obesity-induced male subfertility have been reported, the entire mechanism of obesity-induced male infertility still remains unclear. Here, we show that sperm count, sperm motility and sperm fertilizing ability were decreased in male mice fed a high-fat diet and that the expression of the AdipoR1 gene and protein was decreased, and the expression of pro-apoptotic genes and protein increased, in the testis from mice fed a high-fat diet. Moreover, we demonstrate that testes weight, sperm count, sperm motility and sperm fertilizing ability were significantly decreased in AdipoR1 knockout mice compared to those in wild-type mice; furthermore, the phosphorylation of AMPK was decreased, and the expression of pro-apoptotic genes and proteins, caspase-6 activity and pathologically apoptotic seminiferous tubules were increased, in the testis from AdipoR1 knockout mice. Furthermore, study findings show that orally administrated AdipoRon decreased caspase-6 activity and apoptotic seminiferous tubules in the testis, thus ameliorating sperm motility in male mice fed a high-fat diet. This was the first study to demonstrate that decreased AdipoR1/AMPK signaling led to increased caspase-6 activity/increased apoptosis in the testis thus likely accounting for male infertility.


Assuntos
Proteínas Quinases Ativadas por AMP , Infertilidade Masculina , Animais , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Caspase 6/metabolismo , Infertilidade Masculina/etiologia , Infertilidade Masculina/metabolismo , Camundongos Knockout , Obesidade/complicações , Obesidade/metabolismo , Sêmen , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Testículo/metabolismo
2.
Sci Adv ; 9(45): eadg4216, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37948516

RESUMO

Adiponectin receptors, AdipoR1 and AdipoR2 are promising targets for the prevention and treatment of metabolic diseases. In this study, we aimed to establish agonistic antibodies against AdipoR1 and AdipoR2 with a long enough half-life to provide a means of improving poor medication adherence associated with preclinical small-molecule AdipoR agonists or existing antidiabetic drugs. Monoclonal antibodies were obtained by immunizing AdipoR knockout mice with human AdipoR-expressing cells. Of the antibodies shown to bind to both, an agonist antibody was obtained, which exhibited adenosine 5'-monophosphate-activated protein kinase-activating properties such as adiponectin and was named AdipoR-activating monoclonal antibody (AdipoRaMab). AdipoRaMab ameliorated glucose intolerance in high-fat diet-fed mice, which was not observed in AdipoR1·AdipoR2 double knockout mice. AdipoRaMab exhibited anti-inflammatory and antifibrotic effects in the nonalcoholic steatohepatitis (NASH) model, indicating its therapeutic potential in diabetes and in NASH. In addition, the results of this study indicated that AdipoRaMab may exert therapeutic effects even in a once-monthly dosing regimen through its humanization.


Assuntos
Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Camundongos Knockout
3.
Endocr J ; 69(1): 1-8, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-34511589

RESUMO

While it is well recognized that exercise represents a radical preventive and therapeutic measure for lifestyle-related diseases, it is clear that contemporary lifestyles abound with situations where exercise may be found difficult to implement on a continuous basis. Indeed, this has led to global expectations for elucidation of the exercise-activated skeletal muscle signaling pathways as well as for development of exercise mimics that effectively activate such pathways. It is shown that exercise activates the transcriptional coactivator PGC-1α via AMPK/SIRT1 in muscle, thereby not only enhancing mitochondrial function and muscle endurance but upregulating energy metabolism. Further, adipocyte-derived adiponectin is also shown to activate AMPK/SIRT1/PGC-1α via its receptor AdipoR1 in skeletal muscles. Thus, adiponectin/AdipoR1 signaling is thought to constitute exercise-mimicking signaling. Indeed, it has become clear that AMPK, SIRT1 and AdipoR activators act as exercise mimetics. With the crystal structures of AdipoR elucidated and humanized AdipoR mice generated toward optimization of candidate AdipoR-activators for human use, expectations are mounting for the clinical application in the near future of AdipoR activators as exercise mimetics in humans. This review provides an overview of molecules activated by exercise and compounds activating these molecules, with a focus on the therapeutic potential of AdipoR activators as exercise mimetics.


Assuntos
Adiponectina , Músculo Esquelético , Adiponectina/metabolismo , Animais , Estilo de Vida , Camundongos , Músculo Esquelético/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo
4.
EMBO Mol Med ; 13(10): e13790, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34486824

RESUMO

Alopecia induced by aging or side effects of medications affects millions of people worldwide and impairs the quality of life; however, there is a limit to the current medications. Here, we identify a small transdermally deliverable 5-mer peptide (GLYYF; P5) that activates adiponectin receptor 1 (AdipoR1) and promotes hair growth. P5 sufficiently reproduces the biological effect of adiponectin protein via AMPK signaling pathway, increasing the expression of hair growth factors in the dermal papilla cells of human hair follicle. P5 accelerates hair growth ex vivo and induces anagen hair cycle in mice in vivo. Furthermore, we elucidate a key spot for the binding between AdipoR1 and adiponectin protein using docking simulation and mutagenesis studies. This study suggests that P5 could be used as a topical peptide drug for alleviating pathological conditions, which can be improved by adiponectin protein, such as alopecia.


Assuntos
Folículo Piloso , Qualidade de Vida , Alopecia/tratamento farmacológico , Animais , Cabelo , Camundongos , Transdução de Sinais
5.
Commun Biol ; 4(1): 45, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420419

RESUMO

Adiponectin receptors, AdipoR1 and AdipoR2 exert anti-diabetic effects. Although muscle-specific disruption of AdipoR1 has been shown to result in decreased insulin sensitivity and decreased exercise endurance, it remains to be determined whether upregulation of AdipoR1 could reverse them in obese diabetic mice. Here, we show that muscle-specific expression of human AdipoR1 increased expression levels of genes involved in mitochondrial biogenesis and oxidative stress-detoxification to almost the same extents as treadmill exercise, and concomitantly increased insulin sensitivity and exercise endurance in obese diabetic mice. Moreover, we created AdipoR-humanized mice which express human AdipoR1 in muscle of AdipoR1·R2 double-knockout mice. Most importantly, the small-molecule AdipoR agonist AdipoRon could exert its beneficial effects in muscle via human AdipoR, and increased insulin sensitivity and exercise endurance in AdipoR-humanized mice. This study suggests that expression of human AdipoR1 in skeletal muscle could be exercise-mimetics, and that AdipoRon could exert its beneficial effects via human AdipoR1.


Assuntos
Tolerância ao Exercício/efeitos dos fármacos , Resistência à Insulina , Obesidade/tratamento farmacológico , Piperidinas/uso terapêutico , Receptores de Adiponectina/agonistas , Animais , Avaliação Pré-Clínica de Medicamentos , Masculino , Camundongos , Camundongos Knockout , Piperidinas/farmacologia , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo
6.
Methods ; 191: 23-31, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32334080

RESUMO

Genetically modified mouse models are essential for in vivo investigation of gene function and human disease research. Targeted mutations can be introduced into mouse embryos using genome editing technology such as CRISPR-Cas. Although mice with small indel mutations can be produced, the production of mice carrying large deletions or gene fragment knock-in alleles remains inefficient. We introduced the nuclear localisation property of Cdt1 protein into the CRISPR-Cas system for efficient production of genetically engineered mice. Mouse Cdt1-connected Cas9 (Cas9-mC) was present in the nucleus of HEK293T cells and mouse embryos. Cas9-mC induced a bi-allelic full deletion of Dmd, GC-rich fragment knock-in, and floxed allele knock-in with high efficiency compared to standard Cas9. These results indicate that Cas9-mC is a useful tool for producing mouse models carrying targeted mutations.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Sistemas CRISPR-Cas/genética , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Técnicas de Introdução de Genes , Células HEK293 , Humanos , Camundongos , Zigoto
7.
Front Cardiovasc Med ; 7: 593061, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195481

RESUMO

Since December 2019, coronavirus disease 2019 (COVID-19) caused by a novel coronavirus has spread all over the world affecting tens of millions of people. Another pandemic affecting the modern world, type 2 diabetes mellitus is among the major risk factors for mortality from COVID-19. Current evidence, while limited, suggests that proper blood glucose control may help prevent exacerbation of COVID-19 even in patients with type 2 diabetes mellitus. Under current circumstances where the magic bullet for the disease remains unavailable, it appears that the role of blood glucose control cannot be stressed too much. In this review the profile of each anti-diabetic agent is discussed in relation to COVID-19.

8.
Commun Biol ; 3(1): 446, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796916

RESUMO

The human adiponectin receptors, AdipoR1 and AdipoR2, are key anti-diabetic molecules. We previously reported the crystal structures of human AdipoR1 and AdipoR2, revealing that their seven transmembrane helices form an internal closed cavity (the closed form). In this study, we determined the crystal structure of the D208A variant AdipoR1, which is fully active with respect to the major downstream signaling. Among the three molecules in the asymmetric unit, two assume the closed form, and the other adopts the open form with large openings in the internal cavity. Between the closed- and open-form structures, helices IV and V are tilted with their intracellular ends shifted by about 4 and 11 Å, respectively. Furthermore, we reanalyzed our previous wild-type AdipoR1 diffraction data, and determined a 44:56 mixture of the closed and open forms, respectively. Thus, we have clarified the closed-open interconversion of AdipoR1, which may be relevant to its functional mechanism(s).


Assuntos
Receptores de Adiponectina/química , Receptores de Adiponectina/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Células HEK293 , Humanos , Modelos Moleculares , Conformação Proteica
9.
Diabetol Int ; 10(4): 237-244, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31592400

RESUMO

It is well recognized that the decrease of adiponectin associated with high-fat diet and lack of exercise accounts for the onset of insulin resistance, type 2 diabetes, the metabolic syndrome, and cardiovascular disease. Our research efforts have led to the identification of adiponectin receptors, AdipoR1 and AdipoR2, with the former shown to activate AMP kinase in the liver and the latter shown to activate peroxisome proliferator-activated receptor-α signaling thereby increasing fatty acid oxidation. Again, adiponectin upregulates mitochondrial function in the skeletal muscle thereby improving glucose/lipid metabolism and insulin resistance. These findings suggested that activation of adiponectin/AdipoR signaling could represent a viable therapeutic approach to lifestyle-linked diseases associated with prevalent obesity thus contributing to healthy longevity in humans. Indeed, they have led to the successful discovery of AdipoRon, a small-molecule AdipoR-activating compound. Thus far, AdipoRon has been found not only to improve insulin resistance in mice but to prolong their lifespan shortened by high-fat diet. Additionally, our structure-based drug discovery research has led to AdipoR being identified as an entirely novel structure having a zinc iron bound within its seven-transmembrane domain as well as an opposite orientation to that of G protein-coupled receptors. It is expected that increasing insight into AdipoR signaling will facilitate the structure-based optimization of candidate small-molecule AdipoR-activating compounds for human use as well as the development of molecularly targeted and calorie-limiting/exercise-mimicking agents for lifestyle-linked diseases.

10.
Front Cardiovasc Med ; 6: 116, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31475160

RESUMO

The number of patients with obesity continues to increase seriously worldwide. It has become clear that, against a background of insulin resistance, obesity induces the so-called metabolic syndrome consisting of diabetes, hypertension, and dyslipidemia, leading, consequently, to an increased incidence of cardiovascular disease in affected individuals. It is shown that environmental factors, e.g., high-fat diet and lack of physical activity, not only promote the onset of obesity but lead to impairment of the action of adiponectin and its receptors, thus accounting in part for the onset of insulin resistance, type 2 diabetes/metabolic syndrome, and atherosclerosis in modern society. This review is intended to highlight some milestones in adipocyte research from the discovery of the insulin-sensitizing properties of adiponectin to the elucidation of the structures of its receptors, as well as to clarify their therapeutic implications and prospects for lifestyle-related diseases.

11.
Endocr J ; 65(10): 971-977, 2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30282888

RESUMO

Plasma adiponectin levels and expression of its receptors, AdipoRs are decreased in obesity, which cause insulin resistance and diabetes. AdipoR-deficient mice exhibit insulin resistance and impaired glucose tolerance. Moreover, newly identified AdipoR agonists not only improve insulin resistance but prolong lifespan shortened by obesity via AdipoR. Furthermore, efforts to promote structure-based drug discovery research at our laboratory have led to the first ever successful crystallization of AdipoR as well as to clarification of their structures. Structural analysis of AdipoRs as key molecules in lifestyle-related diseases is thus expected to lead not only to the acceleration of structure-based drug discovery but to the elucidation of novel aspects of the AdipoR structures and functions in the years to come. Finally, with the development of novel AdipoR-targeted antidiabetic agents also capable of prolonging lifespan, the attainment of healthy longevity may finally be brought within reach.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Longevidade/fisiologia , Receptores de Adiponectina/metabolismo , Desenvolvimento de Medicamentos , Humanos , Hipoglicemiantes/farmacologia , Resistência à Insulina/fisiologia , Estilo de Vida , Longevidade/efeitos dos fármacos , Conformação Proteica
12.
Clin Calcium ; 28(1): 73-80, 2018.
Artigo em Japonês | MEDLINE | ID: mdl-29279429

RESUMO

Modern society is characterized by an explosion of lifestyle-related diseases that have, as their basis, obesity due to lack of exercise, which include the metabolic syndrome, diabetes, cardiovascular disease, cancer, and Alzheimer's disease. While exercise is known to be a definitive preventive or therapeutic measure against these diseases, it is clear that contemporary lifestyles tend to make exercise rather difficult to continue. Thus, there are mounting expectations worldwide for exercise-mimicking drugs that activate exercise-mediated signaling pathways. Therefore, this review discusses the mechanisms through which the adiponectin receptor(AdipoR)likely mimics exercise as a key molecule in lifestyle-related diseases, as well as the prospects for emerging small-molecule AdipoR-activating compounds that contribute toward realization of preemptive medicine for lifestyle-related diseases.


Assuntos
Exercício Físico , Estilo de Vida , Adiponectina/metabolismo , Desenho de Fármacos , Humanos , Obesidade/metabolismo , Processamento de Proteína Pós-Traducional
13.
Clin Calcium ; 27(7): 975-981, 2017.
Artigo em Japonês | MEDLINE | ID: mdl-28649104

RESUMO

We have so far clarified that adiponectin, an adipocyte-secreted physiologically active substance, is decreased with the onset of obesity and that lifestyle-related diseases are primarily accounted for by the systemically decreased action of adiponectin/adiponectin receptors(AdipoRs). The activation of adiponectin/AdipoR has caloric restrictive and exercise-mimicking effects thus prolonging lifespan. We were the first in the world to succeed in identifying small-molecule compounds that serve as seed compounds for candidate AdipoR-activating drugs. Moreover, we have also reported the crystal structures of AdipoRs. It is hoped that these milestones will accelerate our efforts at AdipoR structure-based drug discovery leading to the development of novel AdipoR-targeted anti-diabetic drugs with promising life-prolonging properties.


Assuntos
Adiponectina/metabolismo , Envelhecimento , Homeostase , Terapia de Alvo Molecular , Adiponectina/química , Animais , Exercício Físico , Humanos , Conformação Molecular
14.
Clin Calcium ; 26(3): 413-8, 2016 Mar.
Artigo em Japonês | MEDLINE | ID: mdl-26923979

RESUMO

Given that appropriate control of responses of the body to nutritional status is assumed to modulate the pace of aging, thus prolonging lifespan and maintaining youth in humans, expectations are mounting worldwide for modalities targeting the pathways in metabolic regulation for healthy longevity. Of these, this review focuses attention on adiponectin-targeted therapy and discusses milestones in this approach, which include the discovery of the ability of adiponectin to protect against lifestyle-related diseases, identification of its receptors (AdipoRs), elucidation of AdipoR-mediated signaling pathways that promote healthy longevity and acquisition of small-molecule AdipoR agonist, and explores future prospects on adiponectin-targeted therapy.


Assuntos
Estilo de Vida , Obesidade/metabolismo , Obesidade/terapia , Receptores de Adiponectina/agonistas , Transdução de Sinais/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Humanos , Resistência à Insulina/fisiologia , Receptores de Adiponectina/metabolismo , Transdução de Sinais/fisiologia
15.
Diabetes Metab J ; 39(5): 363-72, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26566493

RESUMO

Obesity associated with unhealthy diet and lack of exercise is shown to contribute to the onset and/or aggravation of the metabolic syndrome and diabetes, thus placing affected individuals at increased risk of cardiovascular disease and cancer. Plasma adiponectin levels are decreased in obesity, which causes insulin resistance and diabetes. Therefore, we identified adiponectin receptors (AdipoRs) as the therapeutic target. It was suggested that, similarly to caloric restriction and exercise, activation of the AdipoRs may have the potential not only to improve lifestyle-related diseases but to contribute to prolonged the shortened lifespan on a high caloric unhealthy diet. To this end, we have identified "AdipoRon" as an adiponectin receptor agonist. Indeed, AdipoRon ameliorated diabetes associated with obesity as well as to increase exercise endurance, thus prolonging shortened lifespan of obese mice fed on a high fat diet. Additionally, we have recently determined the crystal structures of the human AdipoRs. The seven-transmembrane helices of AdipoRs are structurally distinct from those of G-protein coupled receptors. It is expected that these findings will contribute not only to the elucidation of the AdipoR-related signal transduction but to the development and optimization of AdipoR-targeted therapeutics for obesity-related diseases such as diabetes.

16.
Nature ; 520(7547): 312-316, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25855295

RESUMO

Adiponectin stimulation of its receptors, AdipoR1 and AdipoR2, increases the activities of 5' AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor (PPAR), respectively, thereby contributing to healthy longevity as key anti-diabetic molecules. AdipoR1 and AdipoR2 were predicted to contain seven transmembrane helices with the opposite topology to G-protein-coupled receptors. Here we report the crystal structures of human AdipoR1 and AdipoR2 at 2.9 and 2.4 Å resolution, respectively, which represent a novel class of receptor structure. The seven-transmembrane helices, conformationally distinct from those of G-protein-coupled receptors, enclose a large cavity where three conserved histidine residues coordinate a zinc ion. The zinc-binding structure may have a role in the adiponectin-stimulated AMPK phosphorylation and UCP2 upregulation. Adiponectin may broadly interact with the extracellular face, rather than the carboxy-terminal tail, of the receptors. The present information will facilitate the understanding of novel structure-function relationships and the development and optimization of AdipoR agonists for the treatment of obesity-related diseases, such as type 2 diabetes.


Assuntos
Receptores de Adiponectina/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Histidina/química , Histidina/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Receptores de Adiponectina/metabolismo , Relação Estrutura-Atividade , Zinco/metabolismo
17.
J Biol Chem ; 290(23): 14567-81, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25907553

RESUMO

A novel peroxisome proliferator-activated receptor (PPAR) modulator, Z-551, having both PPARα agonistic and PPARγ antagonistic activities, has been developed for the treatment of obesity and obesity-related metabolic disorders. We examined the effects of Z-551 on obesity and the metabolic disorders in wild-type mice on the high-fat diet (HFD). In mice on the HFD, Z-551 significantly suppressed body weight gain and ameliorated insulin resistance and abnormal glucose and lipid metabolisms. Z-551 inhibited visceral fat mass gain and adipocyte hypertrophy, and reduced molecules involved in fatty acid uptake and synthesis, macrophage infiltration, and inflammation in adipose tissue. Z-551 increased molecules involved in fatty acid combustion, while reduced molecules associated with gluconeogenesis in the liver. Furthermore, Z-551 significantly reduced fasting plasma levels of glucose, triglyceride, free fatty acid, insulin, and leptin. To elucidate the significance of the PPAR combination, we examined the effects of Z-551 in PPARα-deficient mice and those of a synthetic PPARγ antagonist in wild-type mice on the HFD. Both drugs showed similar, but weaker effects on body weight, insulin resistance and specific events provoked in adipose tissue compared with those of Z-551 as described above, except for lack of effects on fasting plasma triglyceride and free fatty acid levels. These findings suggest that Z-551 ameliorates HFD-induced obesity, insulin resistance, and impairment of glucose and lipid metabolisms by PPARα agonistic and PPARγ antagonistic activities, and therefore, might be clinically useful for preventing or treating obesity and obesity-related metabolic disorders such as insulin resistance, type 2 diabetes, and dyslipidemia.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Obesidade/tratamento farmacológico , Obesidade/etiologia , PPAR alfa/agonistas , PPAR gama/antagonistas & inibidores , Animais , Linhagem Celular , Glucose/metabolismo , Insulina/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/patologia
18.
J Struct Funct Genomics ; 16(1): 11-23, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25575462

RESUMO

The adiponectin receptors (AdipoR1 and AdipoR2) are membrane proteins with seven transmembrane helices. These receptors regulate glucose and fatty acid metabolism, thereby ameliorating type 2 diabetes. The full-length human AdipoR1 and a series of N-terminally truncated mutants of human AdipoR1 and AdipoR2 were expressed in insect cells. In small-scale size exclusion chromatography, the truncated mutants AdipoR1Δ88 (residues 89-375) and AdipoR2Δ99 (residues 100-386) eluted mostly in the intact monodisperse state, while the others eluted primarily as aggregates. However, gel filtration chromatography of the large-scale preparation of the tag-affinity-purified AdipoR1Δ88 revealed the presence of an excessive amount of the aggregated state over the intact state. Since aggregation due to contaminating nucleic acids may have occurred during the sample concentration step, anion-exchange column chromatography was performed immediately after affinity chromatography, to separate the intact AdipoR1Δ88 from the aggregating species. The separated intact AdipoR1Δ88 did not undergo further aggregation, and was successfully purified to homogeneity by gel filtration chromatography. The purified AdipoR1Δ88 and AdipoR2Δ99 proteins were characterized by thermostability assays with 7-diethylamino-3-(4-maleimidophenyl)-4-methyl coumarin, thin layer chromatography of bound lipids, and surface plasmon resonance analysis of ligand binding, demonstrating their structural integrities. The AdipoR1Δ88 and AdipoR2Δ99 proteins were crystallized with the anti-AdipoR1 monoclonal antibody Fv fragment, by the lipidic mesophase method. X-ray diffraction data sets were obtained at resolutions of 2.8 and 2.4 Å, respectively.


Assuntos
Mutação , Receptores de Adiponectina/química , Receptores de Adiponectina/genética , Sequência de Aminoácidos , Animais , Western Blotting , Células Cultivadas , Cromatografia em Gel , Cristalização , Cristalografia por Raios X , Expressão Gênica , Humanos , Dados de Sequência Molecular , Proteínas Mutantes , Agregados Proteicos , Ligação Proteica , Estabilidade Proteica , Receptores de Adiponectina/metabolismo , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície , Temperatura , Difração de Raios X
19.
NPJ Aging Mech Dis ; 1: 15013, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-28721260

RESUMO

Adipocytes are not merely organs for energy conservation but endocrine organs secreting a wide array of physiologically active substances, i.e., adipokines. Of these adipokines, adiponectin is known to exert anti-diabetic and anti-atherosclerotic effects via adiponectin receptors (AdipoR)s, AdipoR1 and AdipoR2. Adiponectin has also recently been shown to regulate longevity signaling thus prolonging lifespan. Therefore, the strategy for activating adiponectin/AdipoR signaling pathways are expected to provide a solid basis for the prevention and treatment of obesity-related diseases such as the metabolic syndrome, type 2 diabetes and cardiovascular disease, as well as for ensuring healthy longevity in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA