Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Plant Foods Hum Nutr ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38492174

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the latest arisen contagious respiratory pathogen related to the global outbreak of atypical pneumonia pandemic (COVID-19). The essential oils (EOs) of Eucalyptus camaldulensis, E. ficifolia F. Muell., E. citriodora Hook, E. globulus Labill, E. sideroxylon Cunn. ex Woolls, and E. torquata Luehm. were investigated for its antiviral activity against SARS-CoV-2. The EOs phytochemical composition was determined using GC/MS analysis. Correlation with the explored antiviral activity was also studied using multi-variate data analysis and Pearson's correlation. The antiviral MTT and cytopathic effect inhibition assays revealed very potent and promising anti SARS-CoV-2 potential for E. citriodora EO (IC50 = 0.00019 µg/mL and SI = 26.27). The multivariate analysis revealed α-pinene, α-terpinyl acetate, globulol, γ -terpinene, and pinocarvone were the main biomarkers for E. citriodora oil. Pearson's correlation revealed that globulol is the top positively correlated compound in E. citriodora oil to its newly explored potent anti SARS-CoV-2 potential. A molecular simulation was performed on globulol via docking in the main active sites of both SARS-CoV-2 viral main protease (Mpro) and spike protein (S). In silico predictive ADMET study was also developed to investigate the pharmacokinetic profile and predict globulol toxicity. The obtained in silico, in vitro and Pearson's correlation results were aligned showing promising SARS-CoV-2 inhibitory activity of E. citriodora and globulol. This study is a first record for E. citriodora EO as a novel lead exhibiting potent in vitro, and in silico anti SARS-CoV-2 potential and suggesting its component globulol as a promising candidate for further extensive in silico, in vitro and in vivo anti-COVID studies.

2.
BMC Complement Med Ther ; 23(1): 465, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104072

RESUMO

BACKGROUND: In the last few decades, the use of plant extracts and their phytochemicals as candidates for the management of parasitic diseases has increased tremendously. Irises are aromatic and medicinal plants that have long been employed in the treatment of different infectious diseases by traditional healers in many cultures. This study aims to explore the potential of three common Iris species (I. confusa Sealy, I. pseudacorus L. and I. germanica L.) against infectious diseases. Their in vitro antiprotozoal potency against Plasmodium falciparum, Trypanosoma brucei brucei, T. b. rhodesiense, T. cruzi and Leishmania infantum beside their cytotoxicity on MRC-5 fibroblasts and primary peritoneal murine macrophages were examined. METHODS: The secondary metabolites of the tested extracts were characterized by UPLC-HRMS/MS and Pearsons correlation was used to correlate them with the antiprotozoal activity. RESULTS: Overall, the non-polar fractions (NPF) showed a significant antiprotozoal activity (score: sc 2 to 5) in contrast to the polar fractions (PF). I. confusa NPF was the most active extract against P. falciparum [IC50 of 1.08 µg/mL, selectivity index (S.I. 26.11) and sc 5] and L. infantum (IC50 of 12.7 µg/mL, S.I. 2.22 and sc 2). I. pseudacorus NPF was the most potent fraction against T. b. rhodesiense (IC50 of 8.17 µg/mL, S.I. 3.67 and sc 3). Monogalactosyldiacylglycerol glycolipid (18:3/18:3), triaceylglycerol (18:2/18:2/18:3), oleic acid, and triterpenoid irridals (spirioiridoconfal C and iso-iridobelamal A) were the top positively correlated metabolites with antiplasmodium and antileishmanial activities of I. confusa NPF. Tumulosic acid, ceramide sphingolipids, corosolic, maslinic, moreollic acids, pheophytin a, triaceylglycerols, mono- and digalactosyldiacylglycerols, phosphatidylglycerol (22:6/18:3), phosphatidylcholines (18:1/18:2), and triterpenoid irridal iso-iridobelamal A, were highly correlated to I. pseudacorus NPF anti- T. b. rhodesiense activity. The ADME study revealed proper drug likeness properties for certain highly corelated secondary metabolites. CONCLUSION: This study is the sole map correlating I. confusa and I. pseudacorus secondary metabolites to their newly explored antiprotozoal activity.


Assuntos
Antiprotozoários , Doenças Transmissíveis , Gênero Iris , Triterpenos , Camundongos , Animais , Linhagem Celular , Antiprotozoários/farmacologia , Antiprotozoários/química
3.
Sci Rep ; 13(1): 18682, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907626

RESUMO

Gouty arthritis is one of the most common metabolic disorders affecting people. Plant based drugs can lower the risk of this health disorder. The anti-gouty potential of Eucalyptus torquata flowers methanol extract (ETME) was evaluated in vitro via measuring the inhibitory effects of five pro-inflammatory enzymes; xanthine oxidase (XO), hyaluronidase, lipoxygenase (5-LOX), cyclooxygenases COX-1, and COX-2, in addition to evaluating the inhibition of histamine release, albumin denaturation, membrane stabilization, tyrosinase, and protease inhibitory activities. Also, its antioxidant potential was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging assays and ferric reducing power assay (FRAP). HPLC-PDA-MS/MS was used to identify the metabolites in the tested extract. The latter exhibited substantial anti-arthritic properties in all assays with comparable potential to the corresponding reference drugs. HPLC-MS/MS analysis of this bioactive extract tentatively annotated 46 metabolites including phloroglucinols, gallic and ellagic acids derivatives, terpenes, flavonoids, fatty acids, and miscellaneous metabolites. Our study highlights the medicinal importance of E. torquata as an anti-gouty candidate and opens new avenues of gouty management.


Assuntos
Artrite Gotosa , Eucalyptus , Plantas Medicinais , Humanos , Plantas Medicinais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectrometria de Massas em Tandem , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Antioxidantes/química , Flores/química
4.
Nat Prod Res ; : 1-6, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752734

RESUMO

WHO declared severe acute respiratory syndrome coronavirus-2' (SARS-CoV-2) was global health emergency since 2020. In our study eighteen natural compounds were investigated for possible anti-SARS-CoV-2 potential, where the most potent natural compounds were ursolic acid and dioscin with IC50 value of 4.49 µg/mL and 7.11 µg/mL, respectively. Hesperidin, catechin, diosmin, isorhamnetin-3-O-glucoside and hyperoside showed medium antiviral activity with IC50 value of 20.87, 22.57, 38.92, 39.62 and 47.10 µg/mL, respectively. Molecular modelling studies including docking study and predictive ADME study were performed on all tested molecules. Their binding energies after docking were calculated and their orientations at the active sites of both SARS-CoV-2 main protease (Mpro) and spike (S) receptors were visualised and compared to the downloaded ligands. Also, the predictive ADME studies showed good pharmacokinetic properties of most of the tested compounds. The obtained in silico results obtained confirmed that many of the tested compounds are promising SARS-CoV-2 inhibitors.

5.
Nat Prod Res ; 37(11): 1856-1862, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36054770

RESUMO

Eurycoma longifolia Jack is one of traditional herbal medicines in South-East Asia. This study evaluated the anticancer, cell-cycle arrest, and apoptotic induction potentials of eurycomanone (EONE) and eurycomanol (EOL), highly oxygenated quassinoids previously isolated from its roots, against large (H460) and small (A549) lung cancer cells. EOL and EONE exhibited IC50 of 386 and 424 µg/mL on normal human lung cell line. EONE exhibited higher anticancer activity with an IC50 of 1.78 µg/mL and 20.66 µg/mL than EOL which exhibited an IC50 of 3.22 µg/mL and 38.05 µg/mL against H460 and A549, respectively. Both reduced the viability of H460 and A549 and arrested G0/G1 phase. The increase in the apoptotic rates was mainly in the percentage of late apoptosis. Moreover, they inhibited A549 by inducing the accumulation of S and G2/M phases. This study revealed EOL and EONE potential as novel leads exhibiting cell-cycle arrest and apoptosis induction potentials.


Assuntos
Neoplasias Pulmonares , Quassinas , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Apoptose , Extratos Vegetais/farmacologia , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral
6.
Sci Rep ; 12(1): 11457, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794127

RESUMO

The development of new natural drugs for Helicobacter pylori (H. pylori) management has recently received significant attention. Iris confusa (I. confusa) was long used for the treatment of bacterial infections and gastritis. This study aimed at evaluating its effect on management of H. pylori infection and exploring its bioactive metabolites. The inhibitory potential of the polar (PF), non-polar (NPF) fractions and the isolated compounds against H. pylori using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay in addition to their cyclooxygenases (COX-1 and COX-2), and nitric oxide (NO) inhibitory activities were assessed. The most biologically active compound was tested for its selective H. pylori inosine-5'-monophosphate dehydrogenase (HpIMPDH) inhibitory potential. Chromatographic purification of PF and NPF allowed isolation of tectoridin, orientin, irigenin, tectorigenin, isoarborinol and stigmasterol. The PF exhibited significant anti-H. pylori (MIC 62.50 µg/mL), COX-1, COX-2 (IC50 of 112.08 ± 0.60 and 47.90 ± 1.50 µg/mL respectively, selectivity index SI of 2.34), and NO (IC50 47.80 ± 0.89 µg/mL) inhibitory activities, while irigenin was the most potent isolated compound. Irigenin was found to have a promising activity against HpIMPDH enzyme (IC50 of 2.07 ± 1.90 µM) with low activity against human hIMPDH2 (IC50 > 10 µM) than clarithromycin, assuring its selectivity. Overall, I. confusa and its isolated compounds may serve as a potential source of plant-based drugs for H. pylori control. This study scientifically validated the claimed anti-bacterial activity of I. confusa and revealed irigenin potential as a novel lead exhibiting anti H. pylori activity in a first record.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Ciclo-Oxigenase 2 , Infecções por Helicobacter , Helicobacter pylori , IMP Desidrogenase , Gênero Iris , Isoflavonas , Ciclo-Oxigenase 2/metabolismo , Infecções por Helicobacter/tratamento farmacológico , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/enzimologia , Humanos , IMP Desidrogenase/antagonistas & inibidores , Gênero Iris/química , Isoflavonas/farmacologia
7.
Food Chem Toxicol ; 162: 112896, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35227860

RESUMO

Breast cancer is the most common cancer and the leading cause of cancer-related mortality among females worldwide. From the leaves of Callistemon citrinus, we have isolated a novel phloroglucinol dimer, calcitrinone A, and analyzed its potential anticancer activity using the triple-negative breast cancer cell line MDA-MB-231. Calcitrinone A decreased the total intracellular ATP levels, inhibited proliferation, and induced apoptosis in MDA-MB-231 cells, but was less toxic to peripheral blood mononuclear cells. The antiproliferative and apoptosis-inducing effects of calcitrinone A were confirmed in vivo using breast cancer xenografts grown on chick chorioallantoic membranes. Mechanistic analysis showed mitochondrial membrane-potential dissipation and interference with energy-yielding processes resulting in cell accumulation in the S phase of the cell cycle. Seahorse assay analysis revealed an early inhibition of mitochondrial oxidative phosphorylation (OXPHOS). At the molecular level, calcitrinone A inhibited activity of the succinate-coenzyme Q reductase (SQR) (mitochondrial complex II). In silico docking identified the coenzyme Q binding pocket as a possible high affinity binding site for calcitrinone A in SQR. Inhibition of complex II was accompanied by strong elevation of mitochondrial superoxide and cytoplasmic ROS. Calcitrinone A might be a promising anticancer lead compound acting through the interference with the mitochondrial complex II activity.

8.
J Ethnopharmacol ; 282: 114658, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34555449

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The use of plant extracts and their phytochemicals as candidates for targeting the microbial resistance inhibition is increasingly focused in last decades. In Mongolian traditional medicine, Irises were long used for the treatment of bacterial infections. Irises have been used since the Ancient Egyptians. AIM OF THE STUDY: Chemical composition and virulence inhibition potential of both polar (PF) and non-polar fractions (NPF) of three common Iris species (I. confusa, I. pseudacorus and I. germanica) were explored. MATERIAL AND METHODS: Secondary metabolites profiling was characterized by the UPLC-HRMS/MS technique. Multi-variate data analysis was performed using Metaboanalyst 3.0. Anti-virulence inhibitory activity was evaluated via anti-haemolytic assay and Quantitative biofilm inhibition assay. RESULTS: I. pseudacorus PF exhibited the most potent effect against S. aureus haemolytic activity. All the tested fractions from all species, except I. pseudacorus NPF, have no significant inhibition on the biofilm formation of methicillin resistant and sensitive (MRSA and MSSA) S. aureus. I. pseudacorus NPF showed potent biofilm inhibitory potential of 71.4 and 85.8% against biofilm formation of MRSA and MSSA, respectively. Metabolite profiling of the investigated species revealed ninety and forty-five metabolites detected in the PFs and NPFs, respectively. Nigricin-type, tectorigenin-type isoflavonids and xanthones allowed the discrimination of I. pseudacorus PF from the other species, highlighting the importance of those metabolites in exerting its promising activity. On the other hand, triterpene acids, iridals, triacylglycerols and ceramides represented the metabolites detected in highest abundance in I. pseudacorus NPF. CONCLUSIONS: This is the sole map represents the secondary metabolites profiling of the PFs and NPFs of common Iris species correlating them with the potent explored Staphylococcus aureus anti-virulence activity.


Assuntos
Antibacterianos/farmacologia , Cromatografia Líquida/métodos , Gênero Iris/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Staphylococcus aureus/efeitos dos fármacos , Espectrometria de Massas em Tandem/métodos , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Rizoma/química , Staphylococcus aureus/fisiologia
9.
Pharmaceutics ; 15(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36678648

RESUMO

Natural medicines formulated using nanotechnology-based systems are a rich source of new wound-treating therapeutics. This study aims to develop thymol-loaded cationic polymeric nanoparticles (CPNPs) to enhance the skin retention and wound healing efficacy of thymol. The developed materials exhibited entrapment efficiencies of 56.58 to 68.97%, particle sizes of 36.30 to 99.41 nm, and positively charged zeta potential. In Vitro sustained release of thymol up to 24 h was achieved. Selected thymol CPNPs (F5 and C2) were mixed with methylcellulose to form hydrogels (GF5 and GC2). An In Vivo skin-retention study revealed that GF5 and GC2 showed 3.3- and 3.6-fold higher retention than free thymol, respectively. An In Vitro scratch-wound healing assay revealed a significant acceleration in wound closure at 24 h by 58.09% (GF5) and 57.45% (GC2). The potential for free thymol hydrogel, GF5, and GC2 to combat MRSA in a murine skin model was evaluated. The bacterial counts, recovered from skin lesions and the spleen, were assessed. Although a significant reduction in the bacterial counts recovered from the skin lesions was shown by all three formulations, only GF5 and GC2 were able to reduce the bacterial dissemination to the spleen. Thus, our study suggests that Eudragit RS30D nanoparticles-based hydrogels are a potential delivery system for enhancing thymol skin retention and wound healing activity.

10.
J Diabetes Metab Disord ; 20(2): 1129-1135, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34900766

RESUMO

BACKGROUND: Gymnocarpos decandrus (Caryophyllaceae) is a well-known wild plant used as a food for grazing animals. Recently it showed potent antidiabetic potential beside its established anti-inflammatory, analgesic and diuretic activities. G. decandrus antidiabetic potential was reported through in-vitro models and resulted in promising α-amylase, α-glucosidase and antiviral Coxsackie B4 inhibitory activities; however no in-vivo studies were conducted. PURPOSE: This study aims to examine Gymnocarpos decandrus ethanol extract (GDEE) safety and to evaluate its in vivo antidiabetic potential. METHOD: Adult albino rats were injected intraperitoneally with alloxan to induce diabetes mellitus and the glucose level was measured after two and four weeks against metformin as a standard drug. Additionally, GDEE characterization and standardization were carried out. RESULTS: GDEE LD50 was up to 5.8 mg/kg and exhibited significant antidiabetic activity 77.17% comparable to the standard drug metformin. Its total phenolics, and flavonoids amounted 127.2 ± 0.23 and 85.5 ± 0.21 mg/g respectively. Vitexin was used as a marker compound for GDEE (140.70 mg/100 gm). CONCLUSION: This study represents the sole in vivo scientific validation of G. decandrus recently documented in vitro antidiabetic potential.

11.
Antibiotics (Basel) ; 10(8)2021 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-34438957

RESUMO

(1) Background: Bacterial resistance to antibiotics is a global life-threatening issue. Antivirulence therapy is a promising approach to combat bacterial infections as it disarms the bacteria from their virulence factors with reduced selective pressure and a lower chance of resistance. (2) Methods: Callistemon citrinus leaf extract and its major constituent, Pulverulentone A, were tested for their ability to inhibit biofilm, exopolysaccharides, pyocyanin and proteases produced by MDR P. aeruginosa. In addition, a Galleria mellonella larvae model was employed to evaluate the in vivo cytotoxicity of Pulverulentone A and its ability to combat Pseudomonas infection. Docking study was further performed to investigate Pulverulentone A druggability against main quorum sensing (QS) targets expressed by P. aeruginosa; (3) Results: Both C. citrinus extract and the isolated compound could inhibit biofilm formation, extracellular polymeric substances (EPS) and pigment production by the tested isolates. Unexpectedly, no significant inhibition was observed on proteases production. The in silico docking analysis revealed good interactions of Pulverulentone A with all QS targets examined (LasR, MyfR/PqsR, QscR). Pulverulentone A was safe up to 400 µg·mL-1 in Galleria caterpillars. Moreover, pre-treatment of P. aeruginosa with Pulverulentone A slightly enhanced the survival of the infected larvae. (4) Conclusions: The present study proves Pulverulentone A safety with significant in vitro and in silico antivirulence potential against P. aeruginosa.

12.
Antibiotics (Basel) ; 10(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201471

RESUMO

The development of multidrug-resistant bacterial strains is a worldwide emerging problem that needs a global solution. Exploring new natural antibiofilm agents is one of the most important alternative therapies in combating bacterial infections. This study aimed at testing the antimicrobial potential of Eucalyptus sideroxylon flowers extract (ESFE) against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans prior to testing the antibiofilm activity against S. aureus, P. aeruginosa and C. albicans. ESFE demonstrated antimicrobial activity and promising inhibition activity against methicillin-resistant S. aureus (MRSA) biofilm formation up to 95.9% (p < 0.05) at a concentration of 0.05 mg/mL and eradicated C. albicans biofilm formation up to 71.2% (p < 0.05) at a concentration of 0.7 mg/mL. LC-MS analysis allowed the tentative identification of eighty-three secondary metabolites: 21 phloroglucinol, 18 terpenes, 16 flavonoids, 7 oleuropeic acid derivatives, 7 ellagic acid derivatives, 6 gallic acid derivatives, 3 phenolic acids, 3 fatty acids and 2 miscellaneous. In conclusion, E. sideroxylon is a rich source of effective constituents that promote its valorization as a promising candidate in the management of multidrug-resistant bacterial infections.

13.
Nat Prod Res ; 35(24): 5954-5959, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32791855

RESUMO

Gymnocarpos decandrus Forssk. is a well-known grazing wild plant. This study targets scientific validation of its claimed antidiabetic activity and exploring its bioactive metabolites. Chromatographic purification of G. decandrus ethanol extract (GDEE) allowed isolation of vitexin (C1), protocatechuic acid (C2) and quercetin (C3). HPLC-PDA-MS/MS enabled identification of nineteen metabolites; 13 flavonoids, 5 saponins, and 1 phenolic acid in G. decandrus and four in the genus Gymnocarpos for the first time. The antidiabetic potential was evaluated via testing the Coxsackie B4 virus and α-glucosidase inhibitory potentials. C3 exhibited its potent antiviral activity through blocking of the virus attachment (96.28%, SI 4.41) and virus inactivation before adsorption (91.47%, SI 4.78). GDEE and C1-C3 showed dose dependent α-glucosidase inhibitory activity with IC50 of 733.9, 293.3, 118.1 and 69.1 µg/mL, respectively. Our study represents the sole complete map for G. decandrus secondary metabolites and presents it as promising drug for diabetes management.


Assuntos
Caryophyllaceae , Hipoglicemiantes , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem , alfa-Glucosidases
14.
Phytochem Anal ; 32(2): 172-182, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32337813

RESUMO

INTRODUCTION: Irises have been medicinally used in Ancient Egyptians, Anatolian, Chinese, British and Irish folk medicine. They are also well-known ornamental plants that have economic value in the perfume industry. The main obvious diagnostic difference between the different species is based on the morphology of the flowers. The flowering cycle is very short as well as the persistence of the fully opened flowers extends for a few days only. Moreover, the climatic conditions significantly causes fluctuation in their blooming time from year to year. This makes the morphological discrimination very difficult. The discrimination of different iris species is of a great importance, as each species is reported to possess different folk medicinal activities. OBJECTIVES: Finding genetic and metabolic markers for differentiation between Iris confusa Sealy (Subgen. Limniris Sect. Lophiris), I. pseudacorus L. (Subgen. Limniris Sect. Limniris) and I. germanica L. (Subgen. Iris Sect. Iris) on levels other than traditional taxonomic features. MATERIAL AND METHODS: Inter-simple sequence repeat (ISSR) and gas chromatography-mass spectrometry (GC-MS) analyses were performed. RESULTS: The highest similarity was found between I. pseudacorus L. and I. germanica L. and the least similarity was between I. confusa Sealy and I. pseudacorus L. The metabolic profiling of the leaves confirmed genetic profiling discriminating I. confusa from the other two species. The primary metabolites of the underground parts showed clear discrimination between the three species. CONCLUSIONS: This study represents the sole complete map for distinguishing the three Iris species on genetic and metabolic bases.


Assuntos
Gênero Iris , Egito , Flores/genética , Cromatografia Gasosa-Espectrometria de Massas , Gênero Iris/genética , Metabolômica
15.
Molecules ; 25(10)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32422967

RESUMO

Hibiscus species (Malvaceae) have been long used as an antihypertensive folk remedy. The aim of our study was to specify the optimum solvent for extraction of the angiotensin-converting enzyme inhibiting (ACEI) constituents from Hibiscus sabdariffa L. The 80% methanol extract (H2) showed the highest ACEI activity, which exceeds that of the standard captopril (IC50 0.01255 ± 0.00343 and 0.210 ± 0.005 µg/mL, respectively). Additionally, in a comprehensive metabolomics approach, an ultra-performance liquid chromatography (UPLC) coupled to the high resolution tandem mass spectrometry (HRMS) method was used to trace the metabolites from each extraction method. Interestingly, our comprehensive analysis showed that the 80% methanol extract was predominated with secondary metabolites from all classes including flavonoids, anthocyanins, phenolic and organic acids. Among the detected metabolites, phenolic acids such as ferulic and chlorogenic acids, organic acids such as citrate derivatives and flavonoids such as kaempferol have been positively correlated to the antihypertensive potential. These results indicates that these compounds may significantly contribute synergistically to the ACE inhibitory activity of the 80% methanol extract.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Anti-Hipertensivos/química , Hibiscus/química , Extração Líquido-Líquido/métodos , Metanol/química , Peptidil Dipeptidase A/química , Solventes/química , Inibidores da Enzima Conversora de Angiotensina/isolamento & purificação , Anti-Hipertensivos/isolamento & purificação , Ácido Clorogênico/química , Ácido Clorogênico/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Ácido Cítrico/química , Ácido Cítrico/isolamento & purificação , Ácidos Cumáricos/química , Ácidos Cumáricos/isolamento & purificação , Ensaios Enzimáticos , Humanos , Quempferóis/química , Quempferóis/isolamento & purificação , Metaboloma , Peptidil Dipeptidase A/metabolismo , Extratos Vegetais/química , Ácido Quínico/análogos & derivados , Ácido Quínico/química , Ácido Quínico/isolamento & purificação , Metabolismo Secundário/fisiologia , Soluções , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem
16.
J Ethnopharmacol ; 254: 112669, 2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32087316

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The development of new inhibitors of bacterial virulence factors from natural origin has recently received significant attention. Callistemon citrinus Skeels is an important plant of great medicinal value. Its antimicrobial activity is well documented. Although several compounds were isolated from this plant, the actual bioactive compounds responsible for its antimicrobial activity are still unrevealed. AIM OF THE STUDY: To evaluate the effect of C. citrinus crude extract and isolated compounds on methicillin-resistant and sensitive Staphylococcus aureus. MATERIALS AND METHODS: The methylene chloride-methanol extract (MME) of C. citrinus leaves was prepared by Soxhlet apparatus. Biologically guided fractionation of MME was accomplished using several normal and reversed phase silica gel columns. The potency of MME and its isolated compounds against methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) was evaluated. In addition, the mechanism of resistance was studied using three virulence factors; antibiofilm activity, inhibition of staphyloxanthin biosynthesis and effect on acid tolerance. Ultrastructural changes in MRSA and MSSA were observed by TEM to understand mode of action of these compounds. RESULTS: Pulverulentone A (C1), 8- desmethyl eucalyptin (C2) and eucalyptin (C3) were isolated from the most bioactive fraction of MME. Confocal scanning laser microscopy images revealed that C. citrinus isolated compounds destroyed the intact architecture of biofilm, thickness and reduced its biomass. Pulverulentone A (C1) showed the most potent anti-biofilm activity up to 71% and 62.3% against MRSA and MSSA, respectively. It also exhibited the highest inhibition of staphyloxanthin biosynthesis of MRSA and MSSA by 55.6% and 54.5%, respectively. The bacterial cell membrane was compromised, losing its integrity and releasing important cellular constituents when exposed to C1-C3 CONCLUSIONS: C. citrinus phenolics and acylphloroglucinols may serve as potential source of plant-based antibacterials and thus could be implicated to control MRSA biofilm formation.


Assuntos
Biofilmes/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Myrtaceae/química , Extratos Vegetais/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Xantofilas/antagonistas & inibidores , Staphylococcus aureus Resistente à Meticilina/ultraestrutura , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão e Varredura , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Staphylococcus aureus/ultraestrutura
17.
PLoS One ; 15(1): e0226185, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31940365

RESUMO

Phyllanthus niruri L. is a widespread tropical plant which is used in Ayurvedic system for liver and kidney ailments. The present study aims at specifying the most active hepatoprotective extract of P. niruri and applying a bio-guided protocol to identify the active compounds responsible for this effect. P. niruri aerial parts were extracted separately with water, 50%, 70% and 80% ethanol. The cytoprotective activity of the extracts was evaluated against CCl4-induced hepatotoxicity in clone-9 and Hepg2 cells. Bioassay-guided fractionation of the aqueous extract (AE) was accomplished for the isolation of the active compounds. Antioxidant activity was assessed using DPPH (1, 1-diphenyl-2-picrylhydrazyl) radical scavenging method and ferric reducing antioxidant power (FRAP). The in vivo hepatoprotective activity of AE was evaluated in CCl4-induced hepatotoxicity in rats at different doses after determination of its LD50. Pretreatment of clone-9 and Hepg2 with different concentrations of AE (1, 0.1, 0.01 mg/ml) had significantly reduced the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) against CCl4 injures, and restored the activity of the natural antioxidants; glutathione (GSH) and superoxide dismutase (SOD) towards normalization. Fractionation of AE gave four fractions (I-IV). Fractions I, II, and IV showed a significant in vitro hepatoprotective activity. Purification of I, II and IV yielded seven compounds; corilagin C1, isocorilagin C2, brevifolin C3, quercetin C4, kaempferol rhamnoside C5, gallic acid C6, and brevifolin carboxylic acid C7. Compounds C1, C2, C5, and C7 showed the highest (p< 0.001) hepatoprotective potency, while C3, C4, and C6 exhibited a moderate (p< 0.001) activity. The AE exhibited strong antioxidant DPPH (IC50 11.6 ± 2 µg/ml) and FRAP (79.352 ± 2.88 mM Ferrous equivalents) activity. In vivo administration of AE in rats (25, 50, 100 and 200 mg/kg) caused normalization of AST, ALT, alkaline phosphatase (ALP), lactate dehydrogenase (LDH), total cholesterol (TC), triglycyrides (TG), total bilirubin (TB), glucose, total proteins (TP), urea and creatinine levels which were elevated by CCl4. AE also decreased TNF-α, NF-KB, IL-6, IL-8, IL10 and COX-2 expression, and significantly antagonizes the effect of CCl4 on the antioxidant enzymes SOD, catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GSP). The histopathological study also supported the hepatoprotective effect of AE. P. niruri isolates exhibited a potent hepatoprotective activity against CCl4-induced hepatotoxicity in clone-9 and Hepg2 cell lines through reduction of lipid peroxidation and maintaining glutathione in its reduced form. This is attributable to their phenolic nature and hence antioxidative potential.


Assuntos
Citoproteção/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Phyllanthus/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Relação Dose-Resposta a Droga , Células Hep G2 , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Masculino , Ratos , Ratos Wistar
18.
Artigo em Inglês | MEDLINE | ID: mdl-31275418

RESUMO

Eurycoma longifolia Jack (Fam.: Simaroubaceae), known as Tongkat Ali (TA), has been known as a symbol of virility and sexual power for men. Metabolic profiling of the aqueous extract of E. longifolia (AEEL) using UPLC-MS/MS in both positive and negative modes allowed the identification of seventeen metabolites. The identified compounds were classified into four groups: quassinoids, alkaloids, triterpenes, and biphenylneolignans. AEEL is considered safe with oral LD50 cut-off >5000 mg/kg. Oral administration of 50, 100, 200, 400, or 800 mg/kg of AEEL for 10 consecutive days to Sprague-Dawley male rats caused significant reductions in mounting, intromission, and ejaculation latencies and increased penile erection index. AEEL increased total body weight and relative weights of seminal vesicles and prostate. Total and free serum testosterone and brain cortical and hippocampal dopamine content was significantly elevated in treated groups with no significant effects on serotonin or noradrenaline content.

19.
J Chromatogr Sci ; 57(6): 565-574, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31209500

RESUMO

Eucalyptus barks contain complex biomass of constituents with considerable chemical and structural diversity. Reports about Eucalyptus sideroxylon Cunn. ex Woolls bark composition and biological activities are limited. Non-targeted metabolomic analysis via ultra-performance liquid chromatography-quadrupole-time-of-flight-photodiode array-mass spectrometry (UPLC-qTOF-PDA-MS) enabled first-time detection of 41 secondary metabolites of which 31 were identified including; 6 flavonoids, 4 ellagic acid derivatives, 8 triterpenes, 10 fatty acids and 3 miscellaneous. The isolation and structure elucidation of methyl morolate, ß-sitosterol, syringaldeyhde and 7'-deoxyguajavadial A were reported. The bark methylene chloride: methanol (8:2) extract demonstrated significant (P < 0.01) in vitro anti-inflammatory activity through membrane stabilization, protein denaturation inhibition, anti-lipoxygenase, and proteinase inhibition assays. The strongest anti-inflammatory activity was via membrane stabilization (34.4%) as compared to diclofenac sodium (26%) at the same concentration (125 µg/mL). Our study represents the sole complete map for E. sideroxylon bark components and represents it as new anti-inflammatory drug.


Assuntos
Anti-Inflamatórios/análise , Cromatografia Líquida de Alta Pressão/métodos , Eucalyptus/química , Floroglucinol/análise , Extratos Vegetais/química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Membrana Eritrocítica/efeitos dos fármacos , Flavonoides/análise , Humanos , Floroglucinol/química , Floroglucinol/farmacologia , Casca de Planta/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Triterpenos/análise
20.
Artigo em Inglês | MEDLINE | ID: mdl-31223329

RESUMO

Background. Eurycoma longifolia Jack (Fam.: Simaroubaceae), known as Tongkat Ali (TA), has been known as a symbol of virility and sexual power. The aim of the study was to screen E. longifolia aqueous extract (AE) and isolates for ROCK-II inhibition. Results. The AE (1-10 µg/ml) showed a significant inhibition for ROCK-II activity (62.8-81%) at P < 0.001 with an IC50 (651.1 ± 32.9 ng/ml) compared to Y-27632 ([(+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl)cyclohexanecarboxamide dihydrochloride]) (68.15-89.9 %) at same concentrations with an IC50 (192 ± 8.37 ng/ml). Chromatographic purification of the aqueous extract (AE) allowed the isolation of eight compounds; stigmasterol T1, trans-coniferyl aldehyde T2, scopoletin T3, eurycomalactone T4, 6α- hydroxyeurycomalactone T5, eurycomanone T6, eurycomanol T7, and eurycomanol-2-O-ß-D-glucopyranoside T8. This is the first report for the isolation of T1 and T3 from E. longifolia and for the isolation of T2 from genus Eurycoma. The isolates (at 10 µg/ml) exhibited maximum inhibition % of ROCK-II 82.1 ± 0.63 (T2), 78.3 ± 0.38 (T6), 77.1 ± 0.11 (T3), 76.2 ± 3.53 (T4), 74.5 ± 1.27 (T5), 74.1 ± 2.97 (T7), 71.4 ± 2.54 (T8), and 60.3 ± 0.14 (T1), where the newly isolated compound trans-coniferyl aldehyde T2 showed the highest inhibitory activity among the tested isolated compounds and even higher than the total extract AE. The standard Y-27632 (10 µg/ml) showed 89.9 ± 0.42 % inhibition for ROCK-II activity when compared to control at P < 0.0001. Conclusion. The traditional use of E. longifolia as aphrodisiac and for male sexual disorders might be in part due to the ROCK-II inhibitory potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA