Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
iScience ; 25(5): 104214, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35494219

RESUMO

High-entropy oxides (HEOs) are an emerging class of advanced ceramic materials capable of stabilizing ultrasmall nanoparticle catalysts. However, their fabrication still relies on high-temperature thermal treatment methodologies affording nonporous architectures. Herein, we report a facile synthesis of single-phase, fluorite-structured HEO nanocrystals via an ultrasound-mediated co-precipitation strategy under ambient conditions. Within 15 min of ultrasound exposure, high-quality fluorite-structured HEO (CeHfZrSnErOx) was generated as ultrasmall-sized particles with high surface area and high oxygen vacancy concentration. Taking advantage of these unique structural features, palladium was introduced and stabilized in the form of highly dispersed Pd nanoclusters within the CeHfZrSnErOx architecture. Neither phase segregation of the CeHfZrSnErOx support nor Pd sintering was observed under thermal treatment up to 900°C. The as-afforded Pd/CeHfZrSnErOx catalyst exhibits good catalytic performance toward CO oxidation, outperforming Pd/CeO2 of the same Pd loading, which highlights the inherent advantage of CeHfZrSnErOx as carrier support over traditional oxides.

2.
iScience ; 24(8): 102884, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34401668

RESUMO

Catalytic transfer hydrogenation (CTH) of biomass-derived furfural (FAL) to furfuryl alcohol is recognized as one of the most versatile techniques for biomass valorization. However, the irreversible sintering of metal sites under the high-temperature reaction or during the coke removal regeneration process poses a serious concern. Herein, we present a silicalite-1-confined ultrasmall CuO structure (CuO@silicalite-1) and then compared its catalytic efficiency against conventional surface-supported CuO structure (CuO/silicalite-1) toward CTF of FAL with alcohols. Characterization results revealed that CuO nanoparticles encapsulated within the silicalite-1 matrix are ∼1.3 nm in size in CuO@silicalite-1, exhibiting better dispersion as compared to that in the CuO/silicalite-1. The CuO@silicalite-1, as a result, exhibited nearly 100-fold higher Cu-mass-based activity than the CuO/silicalite-1 counterpart. More importantly, the activity of the CuO@silicalite-1 catalyst can be regenerated via facile calcination to remove the surface-bound carbon deposits, unlike the CuO/silicalite-1 that suffered severe deactivation after use and cannot be effectively regenerated.

3.
Adv Sci (Weinh) ; 8(3): 2001493, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33552849

RESUMO

High-temperature pyrolysis of nitrogen (N)-rich, crystalline porous organic architectures in the presence of a metal precursor is an important chemical process in heterogeneous catalysis for the fabrication of highly porous N-carbon-supported metal catalysts. Herein, covalent triazine framework (CTF) and CTF-I (that is, CTF after charge modulation with iodomethane) are presented as sacrificial templates, for the synthesis of carbon-supported Ru catalysts-Ru-CTF-900 and Ru-CTF-I-900 respectively, following high-temperature pyrolysis at 900 °C under N2 atmosphere. Predictably, the dispersed Ru on pristine CTF carrier suffered severe sintering of the Ru nanoparticles (NPs) during heat treatment at 900 °C. However, the Ru-CTF-I-900 catalyst is composed of ultra-small Ru NPs and abundant Ru single atoms which may have resulted from much stronger Ru-N interactions. Through modification of the micro-environment within the CTF architecture, Ru precursor interacted on charged-modulated CTF framework shows electrostatic repulsion and steric hindrance, thus contributing toward the high density of single Ru atoms and even smaller Ru NPs after pyrolysis. A Ru-Ru coordination number of only 1.3 is observed in the novel Ru-CTF-I-900 catalyst, which exhibits significantly higher catalytic activity than Ru-CTF-900 for transfer hydrogenation of acetophenone.

4.
ChemSusChem ; 13(18): 4922-4928, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32671910

RESUMO

Catalytic deoxygenation of even-numbered fatty acids into odd-chain linear α-olefins (LAOs) has emerged as a complementary strategy to oligomerization of ethylene, which only affords even-chain LAOs. Although enzymes and homogeneous catalysts have shown promising potential for this application, industrial production of LAOs through these catalytic systems is still very difficult to accomplish to date. A recent breakthrough involves the use of an expensive noble-metal catalyst, Pd/C, through a phosphine ligands-assisted method for LAOs production from fatty acid conversion. This study presents a unique, cost-friendly, non-noble bimetallic NiFe/C catalyst for highly selective LAOs production from fatty acids through decarbonylative dehydration. In the presence of acetic anhydride and phosphine ligand, a remarkable improvement in the yield of 1-heptadecene from the conversion of stearic acid was found over the supported bimetallic catalyst (NiFe/C) as compared to corresponding monometallic counterparts (Ni/C and Fe/C). Through optimization of the reaction conditions, a 70.1 % heptadecene yield with selectivity to 1-heptadecene as high as 92.8 % could be achieved over the bimetallic catalyst at just 190 °C. This unique bimetallic NiFe/C catalyst is composed of NiFe alloy in the material bulk phase and a surface mixture of NiFe alloy and oxidized NiFeδ+ species, which offer a synergized contribution towards decarbonylative dehydration of stearic acid for 1-heptadecene production.

5.
Adv Mater ; 32(44): e2002475, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32643210

RESUMO

Porous carbon spheres derived from polymer colloids with regular geometry, monodispersed morphology, well-controlled contents and structures play important roles in many areas of application, such as energy storage/conversion, gas adsorption/separation, catalysis, and chemo-photothermal therapy. Suitable polymerization reaction and synthetic strategy are both critical for the obtainment of stable polymer colloids as carbon precursors. Basic polymerization reactions are the cornerstones of synthetic strategies, which directly provides the direct molecular-based design of functionalized polymer/carbon spheres. Thus, this progress report mainly focuses on the summary of suitable polymerization reactions for colloidal polymer derived porous carbon spheres. Recent advances in the synthetic strategies and applications are also discussed, including their corresponding polymerization reactions. Finally, the perspectives for the development of polymer derived porous carbon spheres are provided based on the controlled synthesis of polymer colloids and optimization over the carbonization process to achieve highly functionalized carbon spheres for practical applications.

6.
Chem Commun (Camb) ; 56(32): 4456-4459, 2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32196035

RESUMO

Here, a MoOx-T based catalyst was developed by a simple reduction of MoO3 precursors at different temperatures. Interestingly, a partially reduced MoOx-600 catalyst obtained by reducing the MoO3 precursor at 600 °C shows the co-existence of a mixture of different valence states (0, +4, ∼+6) of Mo, and as a result, provides a superior catalytic activity.

7.
ChemSusChem ; 13(1): 111-115, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31721472

RESUMO

In the present study, a sonochemical-based method for one-pot synthesis of entropy-stabilized perovskite oxide nanoparticle catalysts with high surface area was developed. The high-entropy perovskite oxides were synthesized as monodispersed, spherical nanoparticles with an average crystallite size of approximately 5.9 nm. Taking advantage of the acoustic cavitation phenomenon in the ultrasonication process, BaSr(ZrHfTi)O3 , BaSrBi(ZrHfTiFe)O3 and Ru/BaSrBi(ZrHfTiFe)O3 nanoparticles were crystallized as single-phase perovskite structures through ultrasonication exposure without calcination. Notably, the entropically-driven stability of Ru/BaSrBi(ZrHfTiFe)O3 with excellent dispersion of Ru in the perovskite phase bestowed the nanoparticles of Ru/BaSrBi(ZrHfTiFe)O3 with good catalytic activity for CO oxidation.

8.
Chem Commun (Camb) ; 55(100): 15073-15076, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31777909

RESUMO

Herein, we present a facile, sustainable, and highly efficient ionic liquid induced self-assembly protocol to construct a highly porous MnNbOx oxide with exceptionally high catalytic activity for NOx removal at low temperatures and excellent tolerance to H2O and SO2 poisoning.

9.
ChemSusChem ; 12(19): 4400-4404, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31419072

RESUMO

The simultaneous conversion of C5 and C6 mixed sugars into methyl levulinate (MLE) has emerged as a versatile strategy to eliminate costly separation steps. However, the traditional upgrading of C5 sugars into MLE is very complex as it requires both acid-catalyzed and hydrogenation processes. This study concerns the development of a one-pot, hydrogenation-free conversion of C5 sugars into MLE over different acid catalysts at near-critical methanol conditions with the help of 1,3,5-trioxane. For the conversion of C5 sugars over zeolites without the addition of 1,3,5-trioxane, the MLE yield is quite low, owing to low hydrogenation activity. The addition of 1,3,5-trioxane significantly boosts the MLE yield by providing an alternative conversion pathway that does not include the hydrogenation step. A direct comparison of the catalytic performance of five different zeolites reveals that Hß zeolite, which has high densities of both Lewis and Brønsted acid sites, affords the highest MLE yield. With the addition of 1,3,5-trioxane, the hydroxymethylation of furfural derivative and formaldehyde is a key step. Notably, the simultaneous conversion of C5 and C6 sugars catalyzed by Hß zeolite can attain an MLE yield as high as 50.4 % when the reaction conditions are fully optimized. Moreover, the Hß zeolite catalyst can be reused at least five times without significant change in performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA