Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 115(9): 2383-2388, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29777591

RESUMO

Yarrowia lipolytica is an oleaginous yeast that is recognized for its ability to accumulate high levels of lipids, which can serve as precursors to biobased fuels and chemicals. Polyketides, such as triacetic acid lactone (TAL), can also serve as a precursor for diverse commodity chemicals. This study used Y. lipolytica as a host organism for the production of TAL via expression of the 2-pyrone synthase gene from Gerbera hybrida. Induction of lipid biosynthesis by nitrogen-limited growth conditions increased TAL titers. We also manipulated basal levels of TAL production using a DNA cut-and-paste transposon to mobilize and integrate multiple copies of the 2-pyrone synthase gene. Strain modifications and batch fermentation in nitrogen-limited medium yielded TAL titers of 2.6 g/L. Furthermore, we show that minimal medium allows TAL to be readily concentrated at >94% purity and converted at 96% yield to pogostone, a valuable antibiotic. Modifications of this reaction scheme yielded diverse related compounds. Thus, oleaginous organisms have the potential to be flexible microbial biofactories capable of economical synthesis of platform chemicals and the generation of industrially relevant molecules.


Assuntos
Asteraceae/enzimologia , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Pironas/metabolismo , Yarrowia/metabolismo , Asteraceae/genética , Meios de Cultura/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Yarrowia/genética
2.
IUCrJ ; 4(Pt 5): 648-656, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28989720

RESUMO

Rieske nonheme iron oxygenases (ROs) are a well studied class of enzymes. Naphthalene 1,2-dioxygenase (NDO) is used as a model to study ROs. Previous work has shown how side-on binding of oxygen to the mononuclear iron provides this enzyme with the ability to catalyze stereospecific and regiospecific cis-dihydroxylation reactions. It has been well documented that ROs catalyze a variety of other reactions, including mono-oxygenation, desaturation, O- and N-dealkylation, sulfoxidation etc. NDO itself catalyzes a variety of these reactions. Structures of NDO in complex with a number of different substrates show that the orientation of the substrate in the active site controls not only the regiospecificity and stereospecificity, but also the type of reaction catalyzed. It is proposed that the mononuclear iron-activated dioxygen attacks the atoms of the substrate that are most proximal to it. The promiscuity of delivering two products (apparently by two different reactions) from the same substrate can be explained by the possible binding of the substrate in slightly different orientations aided by the observed flexibility of residues in the binding pocket.

3.
ACS Synth Biol ; 6(1): 29-38, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27600996

RESUMO

The shikimate pathway serves an essential role in many organisms. Not only are the three aromatic amino acids synthesized through this pathway, but many secondary metabolites also derive from it. Decades of effort have been invested into engineering Saccharomyces cerevisiae to produce shikimate and its derivatives. In addition to the ability to express cytochrome P450, S. cerevisiae is generally recognized as safe for producing compounds with nutraceutical and pharmaceutical applications. However, the intrinsically complicated regulations involved in central metabolism and the low precursor availability in S. cerevisiae has limited production levels. Here we report the development of a new platform based on Scheffersomyces stipitis, whose superior xylose utilization efficiency makes it particularly suited to produce the shikimate group of compounds. Shikimate was produced at 3.11 g/L, representing the highest level among shikimate pathway products in yeasts. Our work represents a new exploration toward expanding the current collection of microbial factories.


Assuntos
Saccharomycetales/metabolismo , Ácido Chiquímico/metabolismo , Aminoácidos Aromáticos/biossíntese , Perfilação da Expressão Gênica , Genes Fúngicos , Genes Reporter , Engenharia Metabólica , Redes e Vias Metabólicas , Regiões Promotoras Genéticas , Saccharomycetales/genética , Biologia Sintética , Regiões Terminadoras Genéticas , Xilose/metabolismo
4.
Angew Chem Int Ed Engl ; 55(7): 2368-73, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26840213

RESUMO

Biorefineries aim to convert biomass into a spectrum of products ranging from biofuels to specialty chemicals. To achieve economically sustainable conversion, it is crucial to streamline the catalytic and downstream processing steps. In this work, a route that combines bio- and electrocatalysis to convert glucose into bio-based unsaturated nylon-6,6 is reported. An engineered strain of Saccharomyces cerevisiae was used as the initial biocatalyst for the conversion of glucose into muconic acid, with the highest reported muconic acid titer of 559.5 mg L(-1) in yeast. Without any separation, muconic acid was further electrocatalytically hydrogenated to 3-hexenedioic acid in 94 % yield despite the presence of biogenic impurities. Bio-based unsaturated nylon-6,6 (unsaturated polyamide-6,6) was finally obtained by polymerization of 3-hexenedioic acid with hexamethylenediamine.


Assuntos
Carboidratos/química , Engenharia Metabólica , Nylons/síntese química , Biomassa , Catálise , Fermentação
5.
Angew Chem Int Ed Engl ; 53(47): 12718-22, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25196504

RESUMO

It is shown that microenvironments formed around catalytically active sites mitigate catalyst deactivation by biogenic impurities that are present during the production of biorenewable chemicals from biologically derived species. Palladium and ruthenium catalysts are inhibited by the presence of sulfur-containing amino acids; however, these supported metal catalysts are stabilized by overcoating with poly(vinyl alcohol) (PVA), which creates a microenvironment unfavorable for biogenic impurities. Moreover, deactivation of Pd catalysts by carbon deposition from the decomposition of highly reactive species is suppressed by the formation of bimetallic PdAu nanoparticles. Thus, a PVA-overcoated PdAu catalyst was an order of magnitude more stable than a simple Pd catalyst in the hydrogenation of triacetic acid lactone, which is the first step in the production of biobased sorbic acid. A PVA-overcoated Ru catalyst showed a similar improvement in stability during lactic acid hydrogenation to propylene glycol in the presence of methionine.


Assuntos
Aminoácidos/química , Metais Pesados/química , Álcool de Polivinil/química , Pironas/química , Catálise , Domínio Catalítico , Hidrogenação , Metais Pesados/antagonistas & inibidores , Estrutura Molecular
6.
Nano Lett ; 8(1): 333-9, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18052232

RESUMO

Membrane proteins are a class of nanoscopic entities that control the matter, energy, and information transport across cellular boundaries. Electrostatic interactions are shown to direct the rapid co-assembly of proteorhodopsin (PR) and lipids into long-range crystalline arrays. The roles of inherent charge variations on lipid membranes and PR variants with different compositions are examined by tuning recombinant PR variants with different extramembrane domain sizes and charged amino acid substitutions, lipid membrane compositions, and lipid-to-PR stoichiometric ratios. Rational control of this predominantly electrostatic assembly for PR crystallization is demonstrated, and the same principles should be applicable to the assembly and crystallization of other integral membrane proteins.


Assuntos
Proteínas de Membrana/química , Eletricidade Estática
7.
J Bacteriol ; 188(19): 6986-94, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16980501

RESUMO

Rieske oxygenase (RO) systems are two- and three-component enzyme systems that catalyze the formation of cis-dihydrodiols from aromatic substrates. Degradation of pollutants in contaminated soil and generation of chiral synthons have been the major foci of RO research. Substrate specificity and product regio- and stereoselectivity have been shown to vary between individual ROs. While directed evolution methods for altering RO function have been successful in the past, rational engineering of these enzymes still poses a challenge due to the lack of structural understanding. Here we examine the structural changes induced by mutation of Phe-352 in naphthalene 1,2-dioxygenase from Pseudomonas sp. strain NCIB 9816-4 (NDO-O(9816-4)). Structures of the Phe-352-Val mutant in native form and in complex with phenanthrene and anthracene, along with those of wild-type NDO-O(9816-4) in complex with phenanthrene, anthracene, and 3-nitrotoluene, are presented. Phenanthrene was shown to bind in a different orientation in the Phe-352-Val mutant active site from that in the wild type, while anthracene was found to bind in similar positions in both enzymes. Two orientations of 3-nitrotoluene were observed, i.e., a productive and a nonproductive orientation. These orientations help explain why NDO-O(9816-4) forms different products from 3-nitrotoluene than those made from nitrobenzene dioxygenase. Comparison of these structures among themselves and with other known ROs bound to substrates reveals that the orientation of substrate binding at the active site is the primary determinant of product regio- and stereoselectivity.


Assuntos
Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Mutação , Oxigenases/química , Oxigenases/metabolismo , Estrutura Quaternária de Proteína , Antracenos/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Dioxigenases , Modelos Moleculares , Complexos Multienzimáticos/genética , Oxigenases/genética , Fenantrenos/metabolismo , Pseudomonas/enzimologia , Estereoisomerismo , Especificidade por Substrato , Tolueno/análogos & derivados , Tolueno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA