RESUMO
The Raman fingerprint spectral region provides abundant structural information on molecules. However, analyzing vibrational images within this region using coherent Raman imaging remains challenging due to the small Raman cross section and congested spectral features. In this study, we combined ultrabroadband coherent anti-Stokes Raman scattering (CARS) microspectroscopy across the spectral range of 500-4000 cm-1 with multivariate curve resolution-alternating least-squares (MCR-ALS) to reveal hidden Raman bands in the fingerprint region. Applying this method to mouse brain tissue, we extracted information on cholesterol and collagen, leveraging their distinctive molecular signatures, as well as on key molecules such as lipids, proteins, water, and nucleic acids. Moreover, the simultaneous detection of second harmonic generation facilitated label-free visualization of organelles, including arachnoid membrane and Rootletin filaments.
RESUMO
The background light from out-of-focus planes hinders resolution enhancement in structured illumination microscopy when observing volumetric samples. Here we used selective plane illumination and reversibly photoswitchable fluorescent proteins to realize structured illumination within the focal plane and eliminate the out-of-focus background. Theoretical investigation of the imaging properties and experimental demonstrations show that selective plane activation is beneficial for imaging dense microstructures in cells and cell spheroids.
Assuntos
Microscopia de Fluorescência , Microscopia de Fluorescência/métodos , Humanos , Esferoides Celulares , Iluminação/métodos , Proteínas Luminescentes/metabolismo , Proteínas Luminescentes/química , Proteínas de Fluorescência Verde/metabolismoRESUMO
Spore-forming bacteria accumulate dipicolinic acid (DPA) to form spores to survive in extreme environments. Vibrational spectroscopy is widely used to detect DPA and elucidate the existence of the bacteria, while vegetative cells, another form of spore-forming bacteria, have not been studied extensively. Herein, we applied coherent anti-Stokes Raman scattering (CARS) microscopy to spectroscopically identify both spores and vegetative cells without staining or molecular tagging. The spores were identified by the strong CARS signals due to DPA. Furthermore, we observed bright spots in the vegetative cells in the CARS image at 1735 cm-1. The vegetative cells contained molecular species with C=O bonds because this vibrational mode was associated with the carbonyl group. One of the candidate molecular species is diketopimelic acid (DKP), a DPA precursor. This hypothesis was verified by comparing the spectrum obtained by the vegetative cells with that of the DKP analogue (ketopimelic acid) and with the result obtained by DFT calculation. The results indicate that the observed vegetative cell is in the sporulation process. CARS spectra can be used to monitor the maturation and preformation of spores.
Assuntos
Bactérias , Análise Espectral Raman , Análise Espectral Raman/métodos , Esporos , Esporos Bacterianos , VibraçãoRESUMO
We demonstrate the use of Bessel beams for side illumination slit-scanning Raman imaging for label-free and hyperspectral analysis of cell spheroids. The background elimination by the side illumination and the aberration-resistant Bessel beam drastically improves the image contrast in Raman observation, allowing label-free investigation of intracellular molecules in thick biological samples. Live cell spheroids were observed to confirm the improvement in image contrast and background reduction with Bessel illumination compared to conventional epi-line illumination.
RESUMO
Image scanning microscopy (ISM) overcomes the trade-off between spatial resolution and signal volume in confocal microscopy by rearranging the signal distribution on a two-dimensional detector array to achieve a spatial resolution close to the theoretical limit achievable by infinitesimal pinhole detection without sacrificing the detected signal intensity. In this paper, we improved the spatial resolution of ISM in three dimensions by exploiting saturated excitation (SAX) of fluorescence. We theoretically investigated the imaging properties of ISM, when the fluorescence signals are nonlinearly induced by SAX, and show combined SAX-ISM fluorescence imaging to demonstrate the improvement of the spatial resolution in three dimensions. In addition, we confirmed that the SNR of SAX-ISM imaging of fluorescent beads and biological samples, which is one of the challenges in conventional SAX microscopy, was improved.
Assuntos
Imagem Óptica , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , CintilografiaRESUMO
In this study, second harmonic generation (SHG) and third harmonic generation (THG) spectroscopic imaging were performed on biological samples using a femtosecond laser source in the third near-infrared (NIR) optical window (NIR-III). Using a visible-NIR spectrometer, the SHG and THG signals were simultaneously detected and were extracted using spectral analysis. Visualization of biological samples such as cultured cells (HEK293â T), mouse brain slices, and the nematode Caenorhabditis elegans was performed in a label-free manner. In particular, in an SHG image of an entire coronal brain section (8 × 6 mm2), we observed mesh-like and filamentous structures in the arachnoid mater and wall of the cerebral ventricle, probably corresponding to the collagen fibers, cilia, and rootlet. Moreover, the THG images clearly depicted the densely packed axons in the white matter and cell nuclei at the cortex of the mouse brain slice sample and lipid-rich granules such as lipid droplets inside the nematode. The observations and conclusions drawn from this technique confirm that it can be utilized for various biological applications, including in vivo label-free imaging of living animals.
RESUMO
We improved the three-dimensional spatial resolution of laser scanning transmission microscopy by exploiting the saturated absorption of dye molecules. The saturated absorption is induced by the high-intensity light irradiation and localises the signal within the centre of the focal spot. Our numerical calculation indicates that the spatial resolution in transmission imaging is significantly improved for both lateral and axial directions using nonlinear transmitted signals induced by saturated absorption. We experimentally demonstrated the improvement of the three-dimensional resolution by observing fine structures of stained rat kidney tissues, which were not able to be visualised by conventional laser scanning transmission microscopy.
Confocal laser scanning microscopy is a powerful technique for three-dimensional imaging to study structures in a specimen. The use of confocal pinhole provides three-dimensional spatial resolution in various types of optical microscopes, such as fluorescence, reflection and scattering. However, in transmission microscopy, the confocal pinhole cannot provide the same effect because the spatial information on the optical axial is not transferred in the imaging system. Therefore, the three-dimensional distribution of light absorbers cannot be observed by laser scanning transmission microscopy. In this paper, we propose the use of saturated absorption to image the three-dimensional distribution of light absorbers in a sample by laser scanning transmission microscopy. The saturated absorption is induced by the high-intensity light irradiation and occurs prominently at the centre of a focal spot. The information of the saturated absorption signal within the focal spot is transferred to the transmitted light, providing the capability of optical sectioning in transmission imaging. In our research, we theoretically and experimentally confirmed that light absorption by dye molecules is saturable at the high illumination intensity, and the saturated absorption signal can be extracted by harmonic demodulation. We obtained the images of a stained rat kidney tissue by selectively detecting the nonlinear transmission signals induced by saturable absorption of the dye molecules. We confirmed the high depth discrimination capability of our technique clearly visualised the fine structures in the specimen that cannot be observed by a conventional laser scanning absorption microscope.
Assuntos
Lasers , Animais , Ratos , Fenômenos Químicos , Microscopia ConfocalRESUMO
Two-photon excitation microscopy is one of the key techniques used to observe three-dimensional (3-D) structures in biological samples. We utilized a visible-wavelength laser beam for two-photon excitation in a multifocus confocal scanning system to improve the spatial resolution and image contrast in 3-D live-cell imaging. Experimental and numerical analyses revealed that the axial resolution has improved for a wide range of pinhole sizes used for confocal detection. We observed the 3-D movements of the Golgi bodies in living HeLa cells with an imaging speed of 2 s per volume. We also confirmed that the time-lapse observation up to 8 min did not cause significant cell damage in two-photon excitation experiments using wavelengths in the visible light range. These results demonstrate that multifocus, two-photon excitation microscopy with the use of a visible wavelength can constitute a simple technique for 3-D visualization of living cells with high spatial resolution and image contrast.
Assuntos
Microscopia de Fluorescência por Excitação Multifotônica/métodos , Corantes Fluorescentes , Complexo de Golgi/fisiologia , Complexo de Golgi/ultraestrutura , Células HeLa , Humanos , Imageamento Tridimensional/métodos , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Movimento/fisiologia , Fenômenos Ópticos , Análise de Célula Única/métodos , Imagem com Lapso de Tempo/instrumentação , Imagem com Lapso de Tempo/métodosRESUMO
We present a technique for improving the spatial resolution of two-photon excitation microscopy; our technique combines annular illumination with an in situ estimation of the point spread function (PSF) used for deconvolution. For the in situ estimation of the PSF, we developed a technique called autocorrelation scanning, in which a sample is imaged by the scanning of two excitation foci that are overlapped over various distances. The image series obtained with the variation of the distance between the two foci provides the autocorrelation function of the PSF, which can be used to estimate the PSF at specific positions within a sample. We proved the principle and the effectiveness of this technique through observations of a fluorescent biological sample, and we confirmed that the improvement in the spatial resolution was ~1.7 times that of typical two-photon excitation microscopy by observing a mouse brain phantom at a depth of 200 µm.
RESUMO
We demonstrated resolution improvement in two-photon excitation microscopy by combining saturated excitation (SAX) of fluorescence and pupil manipulation. We theoretically estimated the resolution improvement and the sidelobe effect in the point spread function with various pupil designs and found that the combination of SAX and core-ring illumination can effectively enhance the spatial resolution in 3D and suppress sidelobe artifacts. The experimental demonstration shows that the proposed technique is effective for observation with a depth of 100 µm in a tissue phantom and can be applied to 3D observations of tissue samples with higher spatial resolution than conventional two-photon excitation microscopy.
Assuntos
Iluminação , Microscopia de Fluorescência/métodos , Fótons , Corantes Fluorescentes/química , Células HeLa , Humanos , Imagens de FantasmasRESUMO
Because of their exceptional local-field enhancement and ultrasmall mode volume, plasmonic components can integrate photonics and electronics at nanoscale, and active control of plasmons is the key. However, all-optical modulation of plasmonic response with nanometer mode volume and unity modulation depth is still lacking. Here we show that scattering from a plasmonic nanoparticle, whose volume is smaller than 0.001 µm(3), can be optically switched off with less than 100 µW power. Over 80% modulation depth is observed, and shows no degradation after repetitive switching. The spectral bandwidth approaches 100 nm. The underlying mechanism is suggested to be photothermal effects, and the effective single-particle nonlinearity reaches nearly 10(-9) m(2)/W, which is to our knowledge the largest record of metallic materials to date. As a novel application, the non-bleaching and unlimitedly switchable scattering is used to enhance optical resolution to λ/5 (λ/9 after deconvolution), with 100-fold less intensity requirement compared to similar superresolution techniques. Our work not only opens up a new field of ultrasmall all-optical control based on scattering from a single nanoparticle, but also facilitates superresolution imaging for long-term observation.
RESUMO
Plasmonics, which are based on the collective oscillation of electrons due to light excitation, involve strongly enhanced local electric fields and thus have potential applications in nonlinear optics, which requires extraordinary optical intensity. One of the most studied nonlinearities in plasmonics is nonlinear absorption, including saturation and reverse saturation behaviors. Although scattering and absorption in nanoparticles are closely correlated by the Mie theory, there has been no report of nonlinearities in plasmonic scattering until very recently. Last year, not only saturation, but also reverse saturation of scattering in an isolated plasmonic particle was demonstrated for the first time. The results showed that saturable scattering exhibits clear wavelength dependence, which seems to be directly linked to the localized surface plasmon resonance (LSPR). Combined with the intensity-dependent measurements, the results suggest the possibility of a common mechanism underlying the nonlinear behaviors of scattering and absorption. These nonlinearities of scattering from a single gold nanosphere (GNS) are widely applicable, including in super-resolution microscopy and optical switches. In this paper, it is described in detail how to measure nonlinearity of scattering in a single GNP and how to employ the super-resolution technique to enhance the optical imaging resolution based on saturable scattering. This discovery features the first super-resolution microscopy based on nonlinear scattering, which is a novel non-bleaching contrast method that can achieve a resolution as low as l/8 and will potentially be useful in biomedicine and material studies.
Assuntos
Ouro/química , Nanopartículas Metálicas/química , Ressonância de Plasmônio de Superfície/métodos , Elétrons , Luz , Dinâmica não Linear , Imagem Óptica/métodos , Óptica e Fotônica , Espalhamento de RadiaçãoRESUMO
Nonlinear plasmonics has attracted a lot of interests due to its wide applications. Recently, we demonstrated saturation and reverse saturation of scattering from a single plasmonic nanoparticle, which exhibits extremely narrow side lobes and central peaks in scattering images [ACS Photonics 1(1), 32 (2014)]. It is desirable to extract the reversed saturated part to further enhance optical resolution. However, such separation is not possible with conventional confocal microscope. Here we combine reverse saturable scattering and saturated excitation (SAX) microscopy. With quantitative analyses of amplitude and phase of SAX signals, unexpectedly high-order nonlinearities are revealed. Our result provides greatly reduced width in point spread function of scattering-based optical microscopy. It will find applications in not only nonlinear material analysis, but also high-resolution biomedical microscopy.
Assuntos
Luz , Teste de Materiais/métodos , Microscopia de Fluorescência/métodos , Espalhamento de Radiação , FluorescênciaRESUMO
We show that scattering from a single gold nanoparticle is saturable for the first time. Wavelength-dependent study reveals that the saturation behavior is governed by depletion of surface plasmon resonance, not the thermal effect. We observed interesting flattening of the point spread function of scattering from a single nanoparticle due to saturation. By extracting the saturated part of scattering via temporal modulation, we achieve λ/8 point spread function in far-field imaging with unambiguous separation of adjacent particles.