Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gastrointest Endosc ; 99(6): 1039-1047.e1, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38224821

RESUMO

BACKGROUND AND AIMS: A submucosal injection solution is used to assist in endoscopic surgery. The high viscosity of current solutions makes them difficult to inject. In the present study, we developed an extremely low-viscosity, easy-to-use submucosal injection solution using phosphorylated pullulan (PPL). METHODS: The PPL solutions were prepared at different concentrations, and their viscosities were measured. The mucosal elevation capacity was evaluated using excised porcine stomachs. Controls included 0.4% sodium hyaluronate (SH), 0.6% sodium alginate (SA), and saline. To evaluate the practicality, the catheter injectability of 0.7% PPL was measured, and EMR and endoscopic submucosal dissection (ESD) were performed using the stomach and colorectum of live pigs. As controls, 0.4% SH and saline were used. RESULTS: The PPL solutions were of extremely low viscosity compared to the solutions of 0.4% SH and 0.6% SA. Nevertheless, the mucosal elevation capacity of PPL solutions for up to 0.7% concentration was similar to that of 0.4% SH, and 0.7% PPL was less resistant to catheter infusion than 0.4% SH and 0.6% SA. In live pig experiments with endoscopic mucosal resection and ESD, snaring after submucosal injection of 0.7% PPL was easier than with 0.4% SH, ESD with 0.7% PPL produced less bubble formation than with 0.4% SH, and the procedure time tended to be shorter with 0.7% PPL than with 0.4% SH because of the shorter injection time. CONCLUSIONS: The PPL solution is an innovative and easy-to-use submucosal injection solution.


Assuntos
Ressecção Endoscópica de Mucosa , Mucosa Gástrica , Glucanos , Animais , Glucanos/administração & dosagem , Ressecção Endoscópica de Mucosa/métodos , Suínos , Viscosidade , Mucosa Gástrica/cirurgia , Injeções , Fosforilação , Mucosa Intestinal/cirurgia , Ácido Hialurônico/administração & dosagem , Alginatos
2.
RSC Adv ; 12(6): 3300-3308, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35425348

RESUMO

Nitrogen/phosphorus-containing melamines (NPCM), a durable flame-retardant, were prepared by the successive treatment of ArOH (Ar = Br n C6H5-n , n = 0, 1, 2, and 3) with POCl3 and melamine monomer. The prepared flame-retardants were grafted through the CH2 unit to lignocellulose nanofibers (LCNFs) by the Mannich reaction. The resulting three-component products were characterized using FT-IR (ATR) and EA. The thermal behavior of the NPCM-treated LCNF fabric samples was determined using TGA and DSC analyses, and their flammability resistances were evaluated by measuring their Limited Oxygen Index (LOI) and the UL-94V test. A multitude of flame retardant elements in the fabric samples increased the LOI values as much as 45 from 20 of the untreated LCNFs. Moreover, the morphology of both the NPCM-treated LCNFs and their burnt fabrics was studied with a scanning electron microscope (SEM). The heat release lowering effect of the LCNF fabric against the water-based paint was observed with a cone calorimeter. Furthermore, the mechanical properties represented as the tensile strength of the NPCM-treated LCNF fabrics revealed that the increase of the NPCM content in the PP-composites led to an increased bending strength with enhancing the flame-retardance.

3.
ACS Biomater Sci Eng ; 6(12): 7032-7040, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33320600

RESUMO

Because ultrahigh-molecular-weight polyethylene (UHMWPE) is susceptible to frictional wear when used in sliding members of artificial joints, it is common practice to use cross-linked UHMWPE instead. However, cross-linked UHMWPE has low impact resistance; implant breakage has been reported in some cases. Hence, sliding members of artificial joints pose a major trade-off between wear resistance and impact resistance, which has not been resolved by any UHMWPE. On the other hand, multiwall carbon nanotubes (MWCNTs) are used in industrial products for reinforcement of polymeric materials but not used as biomaterials because of their unclear safety. In the present study, we attempted to solve this trade-off issue by complexing UHMWPE with MWCNTs. In addition, we assessed the safety of these composites for use in sliding members of artificial joints. The results showed the equivalence of MWCNT/UHMWPE composites to cross-linked UHMWPE in terms of wear resistance and to non-cross-linked UHMWPE in terms of impact resistance. In addition, all MWCNT/UHMWPE composites examined complied with the requirements of biosafety testing in accordance with the ISO10993-series specifications for implantable medical devices. Furthermore, because MWCNTs can occur alone in wear dust, MWCNTs in an amount of about 1.5 times that contained in the dust produced from 50 years of wear (in the worst case) were injected into rat knees, which were monitored for 26 weeks. Although mild inflammatory reactions occurred in the joints, the reactions soon became quiescent. In addition, the MWCNTs did not migrate to other organs. Furthermore, MWCNTs did not exhibit carcinogenicity when injected into the knees of mice genetically modified to spontaneously develop cancer. The MWCNT/UHMWPE composite is a new biomaterial expected to be safe for clinical applications in both total hip arthroplasty and total knee arthroplasty as the first sliding member of artificial joints to have both high wear resistance and high impact resistance.


Assuntos
Artroplastia de Quadril , Nanotubos de Carbono , Animais , Materiais Biocompatíveis , Fricção , Teste de Materiais , Camundongos , Ratos
4.
J Mater Chem B ; 8(24): 5320-5329, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32458954

RESUMO

Several studies have shown the clinical success of hydraulic calcium-silicate cements (hCSCs) for direct and indirect pulp capping and root repair. However, hCSCs have various drawbacks, including long setting time, poor mechanical properties, low bond strength to dentin, and relatively poor handling characteristics. To overcome these limitations, a light-curable, resin-based hCSC (Theracal LC, Bisco) was commercially introduced; however, it did not exhibit much improvement in bond strength. We developed a light-curable self-adhesive pulp-capping material that contains the novel acrylamide monomer N,N'-{[(2-acrylamido-2-[(3-acrylamidopropoxy)methyl]propane-1,3-diyl)bis(oxy)]bis(propane-1,3-diyl)}diacrylamide (FAM-401) and the functional monomer 4-methacryloxyethyl trimellitate anhydride (4-MET). Two experimental resin-based hCSCs containing different calcium sources (portlandite: Exp_Pl; tricalcium silicate cement: Exp_TCS) were prepared, and the commercial hCSCs Theracal LC and resin-free hCSC Biodentine served as controls. The performance of each cement was evaluated based on parameters relevant for vital pulp therapy, such as curing degree on a wet surface, mechanical strength, as determined using a three-point bending test, shear bond strength to dentin, cytotoxicity, as determined using an MTT assay, and the amount of calcium released, as determined using inductively coupled plasma atomic emission spectrometry. Both experimental cements cured on wet surfaces and showed relatively low cytotoxicity. Furthermore, their flexural and shear bond strength to dentin were significantly higher than those of the commercial references. High calcium release was observed for both Exp_Pl and Biodentine. Thus, Exp_Pl as a new self-adhesive pulp-capping agent performed better than the commercial resin-based pulp-capping agent in terms of mechanical strength, bond strength, and calcium release.


Assuntos
Acrilamida/química , Agentes de Capeamento da Polpa Dentária e Pulpectomia/síntese química , Cimentos de Resina/síntese química , Acrilamida/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cricetinae , Cricetulus , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Estrutura Molecular , Tamanho da Partícula , Polimerização , Agentes de Capeamento da Polpa Dentária e Pulpectomia/química , Agentes de Capeamento da Polpa Dentária e Pulpectomia/farmacologia , Cimentos de Resina/química , Cimentos de Resina/farmacologia , Propriedades de Superfície
5.
Acta Biomater ; 100: 388-397, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31568874

RESUMO

Long-term anti-bacterial effect is a desired ability of any dental material in combating tooth caries as one of the most common and widespread persistent diseases today. Among several cationic quaternary ammonium compounds with antiseptic properties, cetylpyridinium chloride (CPC) is often used in mouthrinses and toothpastes. In this study, we incorporated CPC in a soft phyllosilicate mineral (clay), referred to as montmorillonite (Mont), to enable gradual CPC release with rechargeability. Besides measuring CPC release and recharge, we examined the anti-bacterial effect, cytotoxicity and bonding effectiveness of five experimental adhesive formulations, prepared by adding 1 and 3 wt% CPC_Mont, 3 wt% Mont (without CPC), and 1 and 3 wt% CPC (without Mont) to the commercial adhesive Clearfil S3 Bond ND Quick ('C-S3B'; Kuraray Noritake). Strong inhibition of Streptococcus mutans biofilm formation by CPC_Mont adhesives was confirmed by optical density and SEM. CPC release from CPC_Mont adhesives was higher and lasted longer than from CPC adhesives, while CPC_Mont adhesives could also be recharged with CPC upon immersion in 2 wt% CPC. In conclusion, CPC_Mont technology rendered adhesives anti-bacterial properties with recharge ability, this without reducing its bonding potential, neither increasing its cytotoxicity. STATEMENT OF SIGNIFICANCE: Dental caries is one of the most prevalent chronic diseases in the population worldwide and is the major cause of tooth loss. In this study, we developed cetylpyridinium chloride (CPC) loaded montmorillonite (CPC-Mont) with a long-term antibacterial efficacy to prevent caries. CPC is an antibacterial agent approved by FDA, used as an OTC drug and contained in oral hygiene aids. CPC-Mont was incorporated in a dental adhesive to gradually release CPC. CPC_Mont technology rendered adhesives anti-bacterial properties with rechargeability, this without reducing its bonding potential, neither increasing its cytotoxicity.


Assuntos
Adesivos/farmacologia , Anti-Infecciosos/farmacologia , Bentonita/farmacologia , Cetilpiridínio/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Dentina/ultraestrutura , Liberação Controlada de Fármacos , Camundongos , Testes de Sensibilidade Microbiana , Pós , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/crescimento & desenvolvimento , Difração de Raios X
6.
Dent Mater ; 34(7): 1072-1081, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29716740

RESUMO

OBJECTIVES: Although the functional monomer glycero-phosphate dimethacrylate (GPDM) has since long been used in several dental adhesives and more recently in self-adhesive composite cements and restoratives, its mechanism of chemical adhesion to hydroxyapatite (HAp) is still unknown. We therefore investigated the chemical interaction of GPDM with HAp using diverse chemical analyzers and ultra-structurally characterized the interface of a GPDM-based primer formulation with dentin. METHODS: HAp particles were added to a GPDM solution for various periods, upon which they were thoroughly washed with ethanol and water prior to being air-dried. As control, 10-methacryloyloxydecyl dihydrogen phosphate (MDP) was used. The molecular interaction of GPDM with HAp was analyzed using X-ray diffraction (XRD) and solid-state nuclear magnetic resonance (NMR) spectroscopy. Crystal formation upon application of GPDM onto dentin was analyzed using thin-film XRD (TF-XRD). Its hydrophobicity was measured using contact-angle measurement. The interaction of GPDM with dentin was characterized using transmission electron microscopy (TEM). RESULTS: XRD revealed the deposition of dicalcium phosphate dihydrate (DCPD: CaHPO4·2H2O) on HAp after 24h. NMR confirmed the adsorption of GPDM onto HAp. However, GPDM was easily removed after washing with water, unlike MDP that remained adhered to HAp. Dentin treated with GPDM appeared more hydrophilic compared to dentin treated with MDP. TEM disclosed exposed collagen in the hybrid layer produced by the GPDM-based primer formulation. SIGNIFICANCE: Although GPDM adsorbed to HAp, it did not form a stable calcium salt. The bond between GPDM and HAp was weak, unlike the strong bond formed by MDP to HAp. Due to its high hydrophilicity, GPDM might be an adequate monomer for an etch-and-rinse adhesive, but appears less appropriate for a 'mild' self-etch adhesive that besides micro-retention ionically interacts with HAp, or for a self-adhesive restorative material.


Assuntos
Cimentos Dentários/química , Dentina/química , Durapatita/química , Glicerolfosfato Desidrogenase/química , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Teste de Materiais , Metacrilatos/química , Microscopia Eletrônica de Transmissão , Propriedades de Superfície , Difração de Raios X
7.
Dent Mater J ; 35(4): 651-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27477232

RESUMO

Application of hydroxyapatite (HAp) nanoparticles to repair damaged enamel has attracted recent attention. In this study, HAp nanoparticles with various morphologies (spherical, short-rod, long-rod and fiber morphologies) were synthesized via chemical precipitation methods without the addition of template molecules, and the adsorption/desorption behaviors of a cationic antibacterial agent, cetylpyridinium chloride (CPC), on the HAp nanoparticles were evaluated. The adsorption of CPC on each HAp nanoparticle showed Langmuir-type adsorption, and the short-rod/long-rod HAp nanoparticles showed thermodynamically more stable adsorption of CPC than that with the spherical/fiber HAp nanoparticles. The desorption rate of CPC from the short-rod/long-rod HAp nanoparticles was slower than that of the spherical/fiber HAp nanoparticles. The HAp nanoparticles with different CPC release profiles presented here have potential applications as nanoparticulate enamel repair agents with antibacterial properties.


Assuntos
Cetilpiridínio , Esmalte Dentário , Durapatita , Nanopartículas , Adsorção
8.
Dent Mater ; 32(10): 1218-1225, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27461880

RESUMO

OBJECTIVE: For bonding indirect restorations, some 'universal' adhesives incorporate a silane coupling agent to chemically bond to glass-rich ceramics so that a separate ceramic primer is claimed to be no longer needed. With this work, we investigated the effectiveness/stability of the silane coupling function of the silanecontaining experimentally prepared adhesives and Scotchbond Universal (3MESPE). METHODS AND MATERIALS: Experimental adhesives consisted of Scotchbond Universal and the silane-free Clearfil S3 ND Quick (Kuraray Noritake) mixed with Clearfil Porcelain Bond Activator (Kuraray Noritake) and the two adhesives to which γ-methacryloxypropyltrimethoxysilane (γ-MPTS) was added. Shear bond strength was measured onto silica-glass plates; the adhesive formulations were analyzed using fourier transform infrared spectroscopy (FTIR) and 13C nuclear magnetic resonance (NMR). In addition, shear bond strength onto CAD-CAM composite blocks was measured without and after thermo-cycling ageing. RESULTS: A significantly higher bond strength was recorded when Clearfil Porcelain Bond Activator was freshly mixed with the adhesive. Likewise, the experimental adhesives, to which γ-MPTS was added, revealed a significantly higher bond strength, but only when the adhesive was applied immediately after mixing; delayed application resulted in a significantly lower bond strength. FTIR and (13)C NMR revealed hydrolysis and dehydration condensation to progress with the time after γ-MPTS was mixed with the two adhesives. After thermo-cycling, the bond strength onto CAD-CAM composite blocks remained stable only for the two adhesives with which Clearfil Porcelain Bond Activator was mixed. SIGNIFICANCE: Only the silane coupling effect of freshly prepared silanecontaining adhesives was effective. Clinically, the use of a separate silane primer or silane freshly mixed with the adhesive remains recommended to bond glass-rich ceramics.


Assuntos
Colagem Dentária , Metacrilatos , Cimentos de Resina , Silanos , Adesivos , Porcelana Dentária , Teste de Materiais
9.
Eur J Oral Sci ; 124(2): 204-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26864705

RESUMO

The degree of conversion (DC) of camphorquinone/amine-based adhesives is affected by acidic functional monomers as a result of inactivation of the amine co-initiator through an acid-base reaction. During bonding, functional monomers of self-etch adhesives chemically interact with hydroxyapatite (HAp). Here, we tested in how far the latter interaction of functional monomers with HAp counteracts the expected reduction in DC of camphorquinone/amine-based adhesives. The DC of three experimental adhesive formulations, containing either of the two functional monomers [10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) or 4-methacryloxyethyl trimellitic acid anhydride (4-META)] or no functional monomer (no-FM; control), was measured with and without HAp powder added to the adhesive formulations. Both the variables 'functional monomer' and 'HAp' were found to be significant, with the functional monomer reducing the DC and HAp counteracting this effect. It is concluded that the functional monomers 10-MDP and 4-META interfere with the polymerization efficiency of adhesives. This interference is less prominent in the presence of HAp, which would clinically correspond to when these two functional monomers of the adhesive simultaneously interact with HAp in tooth tissue.


Assuntos
Polimerização , Adesivos , Durapatita , Metacrilatos
10.
Biomed Mater ; 10(6): 065009, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26586655

RESUMO

A multifunctional biomaterial with the capacity bond to hard tissues, such as bones and teeth, is a real need for medical and dental applications in tissue engineering and regenerative medicine. Recently, we created phosphorylated-pullulan (PPL), capable of binding to hydroxyapatite in bones and teeth. In the present study, we employed PPL as a novel biocompatible material for bone engineering. First, an in vitro evaluation of the mechanical properties of PPL demonstrated both PPL and PPL/ß-TCP composites have higher shear bond strength than materials in current clinical use, including polymethylmethacrylate (PMMA) cement and α-tricalcium phosphate (TCP) cement, Biopex-R. Further, the compressive strength of PPL/ß-TCP composite was significantly higher than Biopex-R. Next, in vivo osteoconductivity of PPL/ß-TCP composite was investigated in a murine intramedular injection model. Bone formation was observed 5 weeks after injection of PPL/ß-TCP composite, which was even more evident at 8 weeks; whereas, no bone formation was detected after injection of PPL alone. We then applied PPL/ß-TCP composite to a rabbit ulnar bone defect model and observed bone formation comparable to that induced by Biopex-R. Implantation of PPL/ß-TCP composite induced new bone formation at 4 weeks, which was remarkably evident at 8 weeks. In contrast, Biopex-R remained isolated from the surrounding bone at 8 weeks. In a pig vertebral bone defect model, defects treated with PPL/ß-TCP composite were almost completely replaced by new bone; whereas, PPL alone failed to induce bone formation. Collectively, our results suggest PPL/ß-TCP composite may be useful for bone engineering.


Assuntos
Substitutos Ósseos/administração & dosagem , Substitutos Ósseos/síntese química , Fosfatos de Cálcio/química , Glucanos/química , Nanoconjugados/química , Fraturas da Ulna/terapia , Adesividade , Animais , Regeneração Óssea , Força Compressiva , Feminino , Injeções Intralesionais , Teste de Materiais , Camundongos , Camundongos Endogâmicos C57BL , Nanoconjugados/ultraestrutura , Fosforilação , Coelhos , Resistência ao Cisalhamento , Estresse Mecânico , Resistência à Tração , Resultado do Tratamento , Fraturas da Ulna/patologia
11.
Dent Mater ; 31(12): 1493-501, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26518339

RESUMO

OBJECTIVE: The functional monomer 10-MDP has been considered as one of the best performing functional monomers for dental adhesives. Different adhesives containing 10-MDP are commercially available, among which many so-called 'universal' adhesives. We hypothesize that the quality of the functional monomer 10-MDP in terms of purity may affect bonding performance. METHODS: We therefore characterized three different 10-MDP versions (10-MDP_KN provided by Kuraray Noritake; 10-MDP_PCM provided by PCM; 10-MDP_DMI provided by DMI) using NMR, and analyzed their ability to form 10-MDP_Ca salts on dentin using XRD. The 'immediate' and 'aged' micro-tensile bond strength (µTBS) to dentin of three experimental 10-MDP primers was measured. The resultant interfacial adhesive-dentin ultra-structure was characterized using TEM. RESULTS: NMR disclosed impurities and the presence of 10-MDP dimer in 10-MDP_PCM and 10-MDP_DMI. 10-MDP_PCM and 10-MDP_DMI appeared also sensitive to hydrolysis. 10-MDP_KN, on the contrary, contained less impurities and dimer, and did not undergo hydrolysis. XRD revealed more intense 10-MDP_Ca salt deposition on dentin induced by 10-MDP_KN. The adhesive based on the experimental 10-MDP_KN primer resulted in a significantly higher 'immediate' bond strength that remained stable upon aging; the µTBS of the experimental 10-MDP_PCM and 10-MDP_DMI adhesives significantly dropped upon aging. TEM revealed thicker hybridization and more intense nano-layering for 10-MDP_KN. SIGNIFICANCE: It was concluded that primer impurities and the presence of 10-MDP dimer affected not only hybridization, but also reduced the formation of 10-MDP_Ca salts and nano-layering. 10-MDP in a high purity grade is essential to achieve durable bonding.


Assuntos
Adesivos Dentinários/química , Dentina/ultraestrutura , Metacrilatos/química , Animais , Bovinos , Técnicas In Vitro , Espectroscopia de Ressonância Magnética , Teste de Materiais , Microscopia Eletrônica de Transmissão , Cimentos de Resina/química , Propriedades de Superfície , Resistência à Tração
12.
Dent Mater ; 29(8): 888-97, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23768795

RESUMO

OBJECTIVES: The functional monomer 10-methacryloxydecyl dihydrogen phosphate (10-MDP), recently used in more self-etch adhesives, chemically bonds to hydroxyapatite (HAp) and thus tooth tissue. Although the interfacial interaction of the phosphoric-acid functional group of 10-MDP with HAp-based substrates has well been documented, the effect of the long carbon-chain spacer of 10-MDP on the bonding effectiveness is far from understood. METHODS: We investigated three phosphoric-acid monomers, 2-methacryloyloxyethyl dihydrogen phosphate (2-MEP), 6-methacryloyloxyhexyl dihydrogen phosphate (6-MHP) and 10-MDP, that only differed for the length of the carbon chain, on their chemical interaction potential with HAp and dentin, this correlatively using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Commercial 6-MHP and 10-MDP containing adhesives were investigated as well. RESULTS: XRD revealed that on HAp only 10-MDP produced monomer-calcium salts in the form of 'nano-layering', while on dentin all monomers produced 'nano-layering', but with a varying intensity in the order of 10-MDP>6-MHP>2-MEP. TEM confirmed that 10-MDP formed the thickest hybrid and adhesive layer. XRD and TEM revealed 'nano-layering' for all commercial adhesives on dentin, though less intensively for the 6-MHP containing adhesive than for the 10-MDP ones. SIGNIFICANCE: It is concluded that not only the phosphoric-acid group but also the spacer group, and its length, affect the chemical interaction potential with HAp and dentin. In addition, the relatively strong 'etching' effect of 10-MDP forms more stable monomer-Ca salts, or 'nano-layering', than the two shorter carbon-chain monomers tested, thereby explaining, at least in part, the better bond durability documented with 10-MDP containing adhesives.


Assuntos
Carbono/química , Colagem Dentária , Durapatita/química , Metacrilatos/química , Animais , Cálcio/química , Bovinos , Dentina/ultraestrutura , Humanos , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Organofosfatos/química , Propriedades de Superfície , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA