Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Front Plant Sci ; 15: 1394223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966147

RESUMO

Salt stress is one of the dominant abiotic stress conditions that cause severe damage to plant growth and, in turn, limiting crop productivity. It is therefore crucial to understand the molecular mechanism underlying plant root responses to high salinity as such knowledge will aid in efforts to develop salt-tolerant crops. Alternative splicing (AS) of precursor RNA is one of the important RNA processing steps that regulate gene expression and proteome diversity, and, consequently, many physiological and biochemical processes in plants, including responses to abiotic stresses like salt stress. In the current study, we utilized high-throughput RNA-sequencing to analyze the changes in the transcriptome and characterize AS landscape during the early response of tomato root to salt stress. Under salt stress conditions, 10,588 genes were found to be differentially expressed, including those involved in hormone signaling transduction, amino acid metabolism, and cell cycle regulation. More than 700 transcription factors (TFs), including members of the MYB, bHLH, and WRKY families, potentially regulated tomato root response to salt stress. AS events were found to be greatly enhanced under salt stress, where exon skipping was the most prevalent event. There were 3709 genes identified as differentially alternatively spliced (DAS), the most prominent of which were serine/threonine protein kinase, pentatricopeptide repeat (PPR)-containing protein, E3 ubiquitin-protein ligase. More than 100 DEGs were implicated in splicing and spliceosome assembly, which may regulate salt-responsive AS events in tomato roots. This study uncovers the stimulation of AS during tomato root response to salt stress and provides a valuable resource of salt-responsive genes for future studies to improve tomato salt tolerance.

2.
Plant Biotechnol J ; 22(7): 2054-2074, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38450864

RESUMO

To challenge the invasion of various pathogens, plants re-direct their resources from plant growth to an innate immune defence system. However, the underlying mechanism that coordinates the induction of the host immune response and the suppression of plant growth remains unclear. Here we demonstrate that an auxin response factor, CaARF9, has dual roles in enhancing the immune resistance to Ralstonia solanacearum infection and in retarding plant growth by repressing the expression of its target genes as exemplified by Casmc4, CaLBD37, CaAPK1b and CaRROP1. The expression of these target genes not only stimulates plant growth but also negatively impacts pepper resistance to R. solanacearum. Under normal conditions, the expression of Casmc4, CaLBD37, CaAPK1b and CaRROP1 is active when promoter-bound CaARF9 is complexed with CaIAA2. Under R. solanacearum infection, however, degradation of CaIAA2 is triggered by SA and JA-mediated signalling defence by the ubiquitin-proteasome system, which enables CaARF9 in the absence of CaIAA2 to repress the expression of Casmc4, CaLBD37, CaAPK1b and CaRROP1 and, in turn, impeding plant growth while facilitating plant defence to R. solanacearum infection. Our findings uncover an exquisite mechanism underlying the trade-off between plant growth and immunity mediated by the transcriptional repressor CaARF9 and its deactivation when complexed with CaIAA2.


Assuntos
Capsicum , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Imunidade Vegetal , Proteínas de Plantas , Ralstonia solanacearum , Ralstonia solanacearum/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Capsicum/genética , Capsicum/imunologia , Capsicum/crescimento & desenvolvimento , Capsicum/microbiologia , Capsicum/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Imunidade Vegetal/genética , Resistência à Doença/genética
3.
J Mol Graph Model ; 129: 108761, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38552302

RESUMO

ADP-glucose pyrophosphorylase plays a pivotal role as an allosteric enzyme, essential for starch biosynthesis in plants. The higher plant AGPase comparises of a pair of large and a pair of small subunits to form a heterotetrameric complex. Growing evidence indicates that each subunit plays a distinct role in regulating the underlying mechanism of starch biosynthesis. In the rice genome, there are four large subunit genes (OsL1-L4) and three small subunit genes (OsS1, OsS2a, and OsS2b). While the structural assembly of cytosolic rice AGPase subunits (OsL2:OsS2b) has been elucidated, there is currently no such documented research available for plastidial rice AGPases (OsL1:OsS1). In this study, we employed protein modeling and MD simulation approaches to gain insights into the structural association of plastidial rice AGPase subunits. Our results demonstrate that the heterotetrameric association of OsL1:OsS1 is very similar to that of cytosolic OsL2:OsS2b and potato AGPase heterotetramer (StLS:StSS). Moreover, the yeast-two-hybrid results on OsL1:OsS1, which resemble StLS:StSS, suggest a differential protein assembly for OsL2:OsS2b. Thus, the regulatory and catalytic mechanisms for plastidial AGPases (OsL1:OsS1) could be different in rice culm and developing endosperm compared to those of OsL2:OsS2b, which are predominantly found in rice endosperm.


Assuntos
Oryza , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-1-Fosfato Adenililtransferase/química , Glucose-1-Fosfato Adenililtransferase/metabolismo , Oryza/genética , Endosperma/genética , Endosperma/metabolismo , Simulação por Computador , Amido/metabolismo , Subunidades Proteicas/metabolismo
5.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362297

RESUMO

Subcellular mRNA localization is an evolutionarily conserved mechanism to spatially and temporally drive local translation and, in turn, protein targeting. Hence, this mechanism achieves precise control of gene expression and establishes functional and structural networks during cell growth and development as well as during stimuli response. Since its discovery in ascidian eggs, mRNA localization has been extensively studied in animal and yeast cells. Although our knowledge of subcellular mRNA localization in plant cells lags considerably behind other biological systems, mRNA localization to the endoplasmic reticulum (ER) has also been well established since its discovery in cereal endosperm cells in the early 1990s. Storage protein mRNA targeting to distinct subdomains of the ER determines efficient accumulation of the corresponding proteins in different endosomal storage sites and, in turn, underlies storage organelle biogenesis in cereal grains. The targeting process requires the presence of RNA localization elements, also called zipcodes, and specific RNA-binding proteins that recognize and bind these zipcodes and recruit other factors to mediate active transport. Here, we review the current knowledge of the mechanisms and functions of mRNA localization to the ER in plant cells and address directions for future research.


Assuntos
Endosperma , Células Vegetais , Animais , Endosperma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Vegetais/metabolismo , Retículo Endoplasmático/metabolismo , Transporte Proteico , Grão Comestível/metabolismo
6.
Front Plant Sci ; 13: 882596, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783947

RESUMO

To cope with abiotic environmental stress, plants rapidly change their gene expression transcriptionally and post-transcriptionally, the latter by translational suppression of selected proteins and the assembly of cytoplasmic stress granules (SGs) that sequester mRNA transcripts. RNA-binding proteins (RBPs) are the major players in these post-transcriptional processes, which control RNA processing in the nucleus, their export from the nucleus, and overall RNA metabolism in the cytoplasm. Because of their diverse modular domain structures, various RBP types dynamically co-assemble with their targeted RNAs and interacting proteins to form SGs, a process that finely regulates stress-responsive gene expression. This review summarizes recent findings on the involvement of RBPs in adapting plants to various abiotic stresses via modulation of specific gene expression events and SG formation. The relationship of these processes with the stress hormone abscisic acid (ABA) is discussed.

8.
Plant Cell ; 33(9): 2965-2980, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34270775

RESUMO

Multiprotein complexes execute and coordinate diverse cellular processes such as organelle biogenesis, vesicle trafficking, cell signaling, and metabolism. Knowledge about their composition and localization provides useful clues about the mechanisms of cellular homeostasis and system-level control. This is of great biological importance and practical significance in heterotrophic rice (Oryza sativa) endosperm and aleurone-subaleurone tissues, which are a primary source of seed vitamins and stored energy. Dozens of protein complexes have been implicated in the synthesis, transport, and storage of seed proteins, lipids, vitamins, and minerals. Mutations in protein complexes that control RNA transport result in aberrant endosperm with shrunken and floury phenotypes, significantly reducing seed yield and quality. The purpose of this study was to broadly predict protein complex composition in the aleurone-subaleurone layers of developing rice seeds using co-fractionation mass spectrometry. Following orthogonal chromatographic separations of biological replicates, thousands of protein elution profiles were subjected to distance-based clustering to enable large-scale multimerization state measurements and protein complex predictions. The predicted complexes had predicted functions across diverse functional categories, including novel heteromeric RNA binding protein complexes that may influence seed quality. This effective and open-ended proteomics pipeline provides useful clues about system-level posttranslational control during the early stages of rice seed development.


Assuntos
Fracionamento Químico , Endosperma/genética , Espectrometria de Massas , Família Multigênica , Oryza/genética , Proteínas de Plantas/análise , Endosperma/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento
9.
Plant Cell Physiol ; 62(1): 125-142, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33237266

RESUMO

The plastidial starch phosphorylase (Pho1) functions in starch metabolism. A distinctive structural feature of the higher Pho1 is a 50-82-amino-acid long peptide (L50-L82), which is absent in phosphorylases from non-plant organisms. To study the function of the rice Pho1 L80 peptide, we complemented a pho1- rice mutant (BMF136) with the wild-type Pho1 gene or with a Pho1 gene lacking the L80 region (Pho1ΔL80). While expression of Pho1 in BMF136 restored normal wild-type phenotype, the introduction of Pho1ΔL80 enhanced the growth rate and plant productivity above wild-type levels. Mass spectrometry analysis of proteins captured by anti-Pho1 showed the surprising presence of PsaC, the terminal electron acceptor/donor subunit of photosystem I (PSI). This unexpected interaction was substantiated by reciprocal immobilized protein pull-down assays of seedling extracts and supported by the presence of Pho1 on isolated PSI complexes resolved by blue-native gels. Spectrophotometric studies showed that Pho1ΔL80 plants exhibited modified PSI and enhanced CO2 assimilation properties. Collectively, these findings indicate that the higher plant Pho1 has dual roles as a potential modulator of source and sink processes.


Assuntos
Oryza/enzimologia , Proteínas de Plantas/metabolismo , Amido Fosforilase/metabolismo , Amido/metabolismo , Espectrometria de Massas , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Plantas/fisiologia , Plântula/metabolismo , Amido Fosforilase/fisiologia
10.
Plant Physiol ; 182(1): 97-109, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31611420

RESUMO

Localization of mRNAs at the subcellular level is an essential mechanism for specific protein targeting and local control of protein synthesis in both eukaryotes and bacteria. While mRNA localization is well documented in metazoans, somatic cells, and microorganisms, only a handful of well-defined mRNA localization examples have been reported in vascular plants and algae. This review summarizes the function and mechanism of mRNA localization and highlights recent studies of mRNA localization in vascular plants. While the emphasis focuses on storage protein mRNA localization in rice endosperm cells, information on targeting of RNAs to organelles (chloroplasts and mitochondria) and plasmodesmata is also discussed.


Assuntos
Células Vegetais/metabolismo , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , RNA Mensageiro/genética , RNA de Plantas/genética
11.
Plant Sci ; 290: 110303, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31779913

RESUMO

The physiological roles of the plastidial phosphorylase in starch metabolism of higher plants have been debated for decades. While estimated physiological substrate levels favor a degradative role, genetic evidence indicates that the plastidial phosphorylase (Pho1) plays an essential role in starch initiation and maturation of the starch granule in developing rice grains. The plastidial enzyme contains a unique peptide domain, up to 82 residues in length depending on the plant species, not found in its cytosolic counterpart or glycogen phosphorylases. The role of this extra peptide domain is perplexing, as its complete removal does not significantly affect the in vitro catalytic or enzymatic regulatory properties of rice Pho1. This peptide domain may have a regulatory function as it contains potential phosphorylation sites and, in some plant Pho1s, a PEST motif, a substrate for proteasome-mediated degradation. We discuss the potential roles of Pho1 and its L80 domain in starch biosynthesis and photosynthesis.


Assuntos
Fosforilases/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Plastídeos/enzimologia , Plantas/enzimologia , Amido/metabolismo
12.
Plant Cell Physiol ; 60(10): 2193-2205, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31198964

RESUMO

Tudor-SN is involved in a myriad of transcriptional and post-transcriptional processes due to its modular structure consisting of 4 tandem SN domains (4SN module) and C-terminal Tsn module consisting of Tudor-partial SN domains. We had previously demonstrated that OsTudor-SN is a key player for transporting storage protein mRNAs to specific ER subdomains in developing rice endosperm. Here, we provide genetic evidence that this multifunctional RBP is required for storage protein expression, seed development and protein body formation. The rice EM1084 line, possessing a nonsynonymous mutation in the 4SN module (SN3 domain), exhibited a strong reduction in grain weight and storage protein accumulation, while a mutation in the Tudor domain (47M) or the loss of the Tsn module (43M) had much smaller effects. Immunoelectron microscopic analysis showed the presence of a new protein body type containing glutelin and prolamine inclusions in EM1084, while 43M and 47M exhibited structurally modified prolamine and glutelin protein bodies. Transcriptome analysis indicates that OsTudor-SN also functions in regulating gene expression of transcriptional factors and genes involved in developmental processes and stress responses as well as for storage proteins. Normal protein body formation, grain weight and expression of many genes were partially restored in EM1084 transgenic line complemented with wild-type OsTudor-SN gene. Overall, our study showed that OsTudor-SN possesses multiple functional properties in rice storage protein expression and seed development and that the 4SN and Tsn modules have unique roles in these processes.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Endosperma/fisiologia , Perfilação da Expressão Gênica , Glutens/metabolismo , Corpos de Inclusão/metabolismo , Mutação , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Fenilpropanolamina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Domínios Proteicos , Transporte de RNA , RNA de Plantas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Armazenamento de Sementes/genética
13.
Plant Sci ; 284: 203-211, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31084873

RESUMO

The transport and targeting of mRNAs to specific intracellular locations is a ubiquitous process in prokaryotic and eukaryotic organisms. Despite the prevalent nature of RNA localization in guiding development, differentiation, cellular movement and intracellular organization of biochemical activities, only a few examples exist in higher plants. Here, we summarize past studies on mRNA-based protein targeting to specific subdomains of the cortical endoplasmic reticulum (ER) using the rice storage protein mRNAs as a model. Such studies have demonstrated that there are multiple pathways of RNA localization to the cortical ER that are controlled by cis-determinants (zipcodes) on the mRNA. These zipcode sequences are recognized by specific RNA binding proteins organized into multi-protein complexes. The available evidence suggests mRNAs are transported to their destination sites by co-opting membrane trafficking factors. Lastly, we discuss the major gaps in our knowledge on RNA localization and how information on the targeting of storage protein mRNAs can be used to further our understanding on how plant mRNAs are organized into regulons to facilitate protein localization and formation of multi-protein complexes.


Assuntos
Oryza/metabolismo , Plantas/metabolismo , RNA de Plantas/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Modelos Biológicos , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
14.
Front Plant Sci ; 10: 70, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804963

RESUMO

Rice grains accumulate starch as their major storage reserve whose biosynthesis is sensitive to heat. ADP-glucose pyrophosphorylase (AGPase) is among the starch biosynthetic enzymes severely affected by heat stress during seed maturation. To increase the heat tolerance of the rice enzyme, we engineered two dominant AGPase subunits expressed in developing endosperm, the large (L2) and small (S2b) subunits of the cytosol-specific AGPase. Bacterial expression of the rice S2b with the rice L2, potato tuber LS (pLS), or with the mosaic rice-potato large subunits, L2-pLS and pLS-L2, produced heat-sensitive recombinant enzymes, which retained less than 10% of their enzyme activities after 5 min incubation at 55°C. However, assembly of the rice L2 with the potato tuber SS (pSS) showed significantly increased heat stability comparable to the heat-stable potato pLS/pSS. The S2b assembled with the mosaic L2-pLS subunit showed 3-fold higher sensitivity to 3-PGA than L2/S2b, whereas the counterpart mosaic pLS-L2/S2b showed 225-fold lower sensitivity. Introduction of a QTC motif into S2b created an N-terminal disulfide linkage that was cleaved by dithiothreitol reduction. The QTC enzyme showed moderate heat stability but was not as stable as the potato AGPase. While the QTC AGPase exhibited approximately fourfold increase in 3-PGA sensitivity, its substrate affinities were largely unchanged. Random mutagenesis of S2bQTC produced six mutant lines with elevated production of glycogen in bacteria. All six lines contained a L379F substitution, which conferred enhanced glycogen production in bacteria and increased heat stability. Modeled structure of this mutant enzyme revealed that this highly conserved leucine residue is located in the enzyme's regulatory pocket that provides interaction sites for activators and inhibitors. Our molecular dynamic simulation analysis suggests that introduction of the QTC motif and the L379F mutation improves enzyme heat stability by stabilizing their backbone structures possibly due to the increased number of H-bonds between the small subunits and increased intermolecular interactions between the two SSs and two LSs at elevated temperature.

15.
Plant Physiol ; 179(3): 1111-1131, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30659066

RESUMO

The transport and targeting of glutelin and prolamine mRNAs to distinct subdomains of the cortical endoplasmic reticulum is a model for mRNA localization in plants. This process requires a number of RNA-binding proteins (RBPs) that recognize and bind to mRNA cis-localization (zipcode) elements to form messenger ribonucleoprotein complexes, which then transport the RNAs to their destination sites at the cortical endoplasmic reticulum. Here, we present evidence that the rice (Oryza sativa) RNA-binding protein, RBP-L, like its interacting RBP-P partner, specifically binds to glutelin and prolamine zipcode RNA sequences and is required for proper mRNA localization in rice endosperm cells. A transfer DNA insertion in the 3' untranslated region resulted in reduced expression of the RBP-L gene to 10% to 25% of that in the wild-type. Reduced amounts of RBP-L caused partial mislocalization of glutelin and prolamine RNAs and conferred other general growth defects, including dwarfism, late flowering, and smaller seeds. Transcriptome analysis showed that RBP-L knockdown greatly affected the expression of prolamine family genes and several classes of transcription factors. Collectively, these results indicate that RBP-L, like RBP-P, is a key RBP involved in mRNA localization in rice endosperm cells. Moreover, distinct from RBP-P, RBP-L exhibits additional regulatory roles in development, either directly through its binding to corresponding RNAs or indirectly through its effect on transcription factors.


Assuntos
Retículo Endoplasmático/metabolismo , Oryza/metabolismo , Proteínas de Plantas/fisiologia , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/fisiologia , Transporte Biológico , Glutens/análise , Glutens/metabolismo , Oryza/genética , Fenilpropanolamina/análise , Fenilpropanolamina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/análise , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína
16.
Plant J ; 97(6): 1073-1088, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30523657

RESUMO

The CS8 transgenic rice (Oryza sativa L.) lines expressing an up-regulated glgC gene produced higher levels of ADPglucose (ADPglc), the substrate for starch synthases. However, the increase in grain weight was much less than the increase in ADPglc levels suggesting one or more downstream rate-limiting steps. Endosperm starch levels were not further enhanced in double transgenic plants expressing both glgC and the maize brittle-1 gene, the latter responsible for transport of ADPglc into the amyloplast. These studies demonstrate that critical processes within the amyloplast stroma restrict maximum carbon flow into starch. RNA-seq analysis showed extensive re-programming of gene expression in the CS8 with 2073 genes up-regulated and 140 down-regulated. One conspicuous gene, up-regulated ~15-fold, coded for a biochemically uncharacterized starch binding domain-containing protein (SBDCP1) possessing a plastid transit peptide. Confocal microscopy and transmission electron microscopy analysis confirmed that SBDCP1 was located in the amyloplasts. Reciprocal immunoprecipitation and pull-down assays indicated an interaction between SBDCP1 and starch synthase IIIa (SSIIIa), which was down-regulated at the protein level in the CS8 line. Furthermore, binding by SBDCP1 inhibited SSIIIa starch polymerization activity in a non-competitive manner. Surprisingly, artificial microRNA gene suppression of SBDCP1 restored protein expression levels of SSIIIa in the CS8 line resulting in starch with lower amylose content and increased amylopectin chains with a higher degree of polymerization. Collectively, our results support the involvement of additional non-enzymatic factors such as SBDCP in starch biosynthesis.


Assuntos
Metabolismo dos Carboidratos , Oryza/enzimologia , Proteínas de Plantas/metabolismo , Amido/biossíntese , Zea mays/genética , Regulação para Baixo , Endosperma/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Oryza/genética , Oryza/fisiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Sintase do Amido/genética , Sintase do Amido/metabolismo , Regulação para Cima
17.
Plant Cell ; 30(10): 2529-2552, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30190374

RESUMO

In developing rice (Oryza sativa) endosperm, mRNAs of the major storage proteins, glutelin and prolamine, are transported and anchored to distinct subdomains of the cortical endoplasmic reticulum. RNA binding protein RBP-P binds to both glutelin and prolamine mRNAs, suggesting a role in some aspect of their RNA metabolism. Here, we show that rice lines expressing mutant RBP-P mislocalize both glutelin and prolamine mRNAs. Different mutant RBP-P proteins exhibited varying degrees of reduced RNA binding and/or protein-protein interaction properties, which may account for the mislocalization of storage protein RNAs. In addition, partial loss of RBP-P function conferred a broad phenotypic variation ranging from dwarfism, chlorophyll deficiency, and sterility to late flowering and low spikelet fertility. Transcriptome analysis highlighted the essential role of RBP-P in regulating storage protein genes and several essential biological processes during grain development. Overall, our data demonstrate the significant roles of RBP-P in glutelin and prolamine mRNA localization and in the regulation of genes important for plant growth and development through its RNA binding activity and cooperative regulation with interacting proteins.


Assuntos
Endosperma/metabolismo , Glutens/genética , Oryza/metabolismo , Prolaminas/genética , Proteínas de Ligação a RNA/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Endosperma/genética , Regulação da Expressão Gênica de Plantas , Glutens/metabolismo , Mutação , Oryza/genética , Oryza/crescimento & desenvolvimento , Prolaminas/metabolismo , Domínios Proteicos , Multimerização Proteica , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Proteínas de Ligação a RNA/genética
18.
J Exp Bot ; 69(21): 5045-5058, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30102323

RESUMO

The transport of rice glutelin storage proteins to the storage vacuoles requires the Rab5 GTPase and its related guanine nucleotide exchange factor (Rab5-GEF). Loss of function of these membrane vesicular trafficking factors results in the initial secretion of storage proteins and later their partial engulfment by the plasma membrane to form an extracellular paramural body (PMB), an aborted endosome complex. Here, we show that in the rice Rab5-GEF mutant glup6, glutelin RNAs are specifically mislocalized from their normal location on the cisternal endoplasmic reticulum (ER) to the protein body-ER, and are also apparently translocated to the PMBs. We substantiated the association of mRNAs with this aborted endosome complex by RNA-seq of PMBs purified by flow cytometry. Two PMB-associated groups of RNA were readily resolved: those that were specifically enriched in this aborted complex and those that were highly expressed in the cytoplasm. Examination of the PMB-enriched RNAs indicated that they were not a random sampling of the glup6 transcriptome but, instead, encompassed only a few functional mRNA classes. Although specific autophagy is also an alternative mechanism, our results support the view that RNA localization may co-opt membrane vesicular trafficking, and that many RNAs that share function or intracellular location are co-transported in developing rice seeds.


Assuntos
Glutens/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Oryza/genética , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA de Plantas/genética , Proteínas rab5 de Ligação ao GTP/genética , Glutens/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
19.
Plant Physiol ; 175(4): 1608-1623, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29084903

RESUMO

The multifunctional RNA-binding protein Tudor-SN plays multiple roles in transcriptional and posttranscriptional processes due to its modular domain structure, consisting of four tandem Staphylococcus nuclease (SN)-like domains (4SN), followed by a carboxyl-terminal Tudor domain, followed by a fifth partial SN sequence (Tsn). In plants, it confers stress tolerance, is a component of stress granules and P-bodies, and may participate in stabilizing and localizing RNAs to specific subdomains of the cortical-endoplasmic reticulum in developing rice (Oryza sativa) endosperm. Here, we show that, in addition to the intact rice OsTudor-SN protein, the 4SN and Tsn modules exist as independent polypeptides, which collectively may coassemble to form a complex population of homodimer and heteroduplex species. The 4SN and Tsn modules exhibit different roles in RNA binding and as a protein scaffold for stress-associated proteins and RNA-binding proteins. Despite their distinct individual properties, mutations in both the 4SN and Tsn modules mislocalize storage protein mRNAs to the cortical endoplasmic reticulum. These results indicate that the two modular peptide regions of OsTudor-SN confer different cellular properties but cooperate in mRNA localization, a process linking its multiple functions in the nucleus and cytoplasm.


Assuntos
Proteínas Nucleares/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , RNA de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Modelos Moleculares , Proteínas Nucleares/genética , Proteínas de Plantas/genética , Conformação Proteica , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
J Exp Bot ; 67(18): 5557-5569, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27588462

RESUMO

To elucidate the starch synthesis pathway and the role of this reserve in rice pollen, we characterized mutations in the plastidic phosphoglucomutase, OspPGM, and the plastidic large subunit of ADP-glucose (ADP-Glc) pyrophosphorylase, OsAGPL4 Both genes were up-regulated in maturing pollen, a stage when starch begins to accumulate. Progeny analysis of self-pollinated heterozygous lines carrying the OspPGM mutant alleles, osppgm-1 and osppgm-2, or the OsAGPL4 mutant allele, osagpl4-1, as well as reciprocal crosses between the wild type (WT) and heterozygotes revealed that loss of OspPGM or OsAGPL4 caused male sterility, with the former condition rescued by the introduction of the WT OspPGM gene. While iodine staining and transmission electron microscopy analyses of pollen grains from homozygous osppgm-1 lines produced by anther culture confirmed the starch null phenotype, pollen from homozygous osagpl4 mutant lines, osagpl4-2 and osagpl4-3, generated by the CRISPR/Cas system, accumulated small amounts of starch which were sufficient to produce viable seed. Such osagpl4 mutant pollen, however, was unable to compete against WT pollen successfully, validating the important role of this reserve in fertilization. Our results demonstrate that starch is mainly polymerized from ADP-Glc synthesized from plastidic hexose phosphates in rice pollen and that starch is an essential requirement for successful fertilization in rice.


Assuntos
Glucose-1-Fosfato Adenililtransferase/metabolismo , Oryza/fisiologia , Fosfoglucomutase/metabolismo , Pólen/metabolismo , Amido/biossíntese , Fertilidade/fisiologia , Glucose-1-Fosfato Adenililtransferase/fisiologia , Microscopia , Mutação , Oryza/enzimologia , Oryza/metabolismo , Fosfoglucomutase/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA