Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Protoplasma ; 261(1): 53-64, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37438649

RESUMO

Leaves of Newbouldia laevis have been extensively used in solving problems associated with infertility and childbirth in many African countries. Yet, information is very limited on the DNA damaging potential of this plant. This study evaluated the cytogenotoxic effect of the aqueous extract of N. laevis leaf using prokaryotic models (Ames Salmonella fluctuation test using TA100 and TA98 strains of Salmonella typhimurium and SOS Chromotest with Escherichia coli PQ37) and eukaryotic model (Allium cepa root cells). Identification of the volatile organic compounds (VOCs) and phytochemical screening of the plant extract were also performed. Onion bulbs were grown on each concentration (1 to 50%; v/v, extract/tap water) of the extract for chromosomal aberrations and root growth analyses. Results of the Ames test indicated that the extract is mutagenic while the SOS Chromotest results showed good complementation to the Ames test results, although the E. coli PQ37 system showed slightly higher sensitivity in the detection of mutagenicity and genotoxicity of the extract. The plant extract was cytotoxic when compared to the control, inducing a significant (p < 0.05) concentration-dependent inhibition of root growth from 5 to 50% concentrations. At 50% concentration, the extract completely inhibited cell division in the A. cepa. Also, chromosomal aberration increased significantly (p < 0.05) in exposed onions from 5 to 20% concentrations. The mutagenicity and cytogenotoxicity recorded in this report were believed to be caused by the presence of VOCs such as 1,2,3-benzene-triol, 1,2-benzenediol, and 5-hydroxymethylfurfural, and alkaloids in the extract an indication of the cytogenotoxicity of the aqueous extract of N. laevis leaf even at low concentration.


Assuntos
Escherichia coli , Infertilidade Masculina , Masculino , Humanos , Testes de Mutagenicidade/métodos , Escherichia coli/genética , Dano ao DNA , Mutagênicos/farmacologia , Cebolas , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
2.
Appl Biochem Biotechnol ; 195(12): 7520-7552, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37010741

RESUMO

The unexpected rise in cancer and diabetes statistics has been a significant global threat, inciting ongoing research into various biomarkers that can act as innovative therapeutic targets for their management. The recent discovery of how EZH2-PPARs' regulatory function affects the metabolic and signalling pathways contributing to this disease has posed a significant breakthrough, with the synergistic combination of inhibitors like GSK-126 and bezafibrate for treating these diseases. Nonetheless, no findings on other protein biomarkers involved in the associated side effects have been reported. As a result of this virtual study, we identified the gene-disease association, protein interaction networks between EZH2-PPARs and other protein biomarkers regulating pancreatic cancer and diabetes pathology, ADME/Toxicity profiling, docking simulation and density functional theory of some natural products. The results indicated a correlation between obesity and hypertensive disease for the investigated biomarkers. At the same time, the predicted protein network validates the link to cancer and diabetes, and nine natural products were screened to have versatile binding capacity against the targets. Among all natural products, phytocassane A outperforms the standard drugs' (GSK-126 and bezafibrate) in silico validation for drug-likeness profiles. Hence, these natural products were conclusively proposed for additional experimental screening to complement the results on their utility in drug development for diabetes and cancer therapy against the EZH2-PPARs' new target.


Assuntos
Produtos Biológicos , Diabetes Mellitus , Neoplasias , Humanos , Insulina , Receptores Ativados por Proliferador de Peroxissomo , Bezafibrato , Estudos Prospectivos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/genética , Produtos Biológicos/farmacologia , Biomarcadores , Simulação de Acoplamento Molecular , Proteína Potenciadora do Homólogo 2 de Zeste/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA