Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Biomacromolecules ; 24(12): 5605-5619, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37950687

RESUMO

Hydrogels of cellulose nanofibrils (CNFs) are promising wound dressing candidates due to their biocompatibility, high water absorption, and transparency. Herein, two different commercially available wood species, softwood and hardwood, were subjected to TEMPO-mediated oxidation to proceed with delignification and oxidation in a one-pot process, and thereafter, nanofibrils were isolated using a high-pressure microfluidizer. Furthermore, transparent nanofibril hydrogel networks were prepared by vacuum filtration. Nanofibril properties and network performance correlated with oxidation were investigated and compared with commercially available TEMPO-oxidized pulp nanofibrils and their networks. Softwood nanofibril hydrogel networks exhibited the best mechanical properties, and in vitro toxicological risk assessment showed no detrimental effect for any of the studied hydrogels on human fibroblast or keratinocyte cells. This study demonstrates a straightforward processing route for direct oxidation of different wood species to obtain nanofibril hydrogels for potential use as wound dressings, with softwood having the most potential.


Assuntos
Celulose , Hidrogéis , Humanos , Bandagens , Oxirredução , Fibroblastos
2.
Biomacromolecules ; 24(5): 2264-2277, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37097826

RESUMO

The self-assembly of nanocellulose in the form of cellulose nanofibers (CNFs) can be accomplished via hydrogen-bonding assistance into completely bio-based hydrogels. This study aimed to use the intrinsic properties of CNFs, such as their ability to form strong networks and high absorption capacity and exploit them in the sustainable development of effective wound dressing materials. First, TEMPO-oxidized CNFs were separated directly from wood (W-CNFs) and compared with CNFs separated from wood pulp (P-CNFs). Second, two approaches were evaluated for hydrogel self-assembly from W-CNFs, where water was removed from the suspensions via evaporation through suspension casting (SC) or vacuum-assisted filtration (VF). Third, the W-CNF-VF hydrogel was compared to commercial bacterial cellulose (BC). The study demonstrates that the self-assembly via VF of nanocellulose hydrogels from wood was the most promising material as wound dressing and displayed comparable properties to that of BC and strength to that of soft tissue.


Assuntos
Celulose Oxidada , Nanofibras , Celulose , Hidrogéis , Bactérias , Bandagens
3.
Mater Today Bio ; 19: 100574, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36852226

RESUMO

The skin is the largest organ of the human body. Wounds disrupt the functions of the skin and can have catastrophic consequences for an individual resulting in significant morbidity and mortality. Wound infections are common and can substantially delay healing and can result in non-healing wounds and sepsis. Early diagnosis and treatment of infection reduce risk of complications and support wound healing. Methods for monitoring of wound pH can facilitate early detection of infection. Here we show a novel strategy for integrating pH sensing capabilities in state-of-the-art hydrogel-based wound dressings fabricated from bacterial nanocellulose (BC). A high surface area material was developed by self-assembly of mesoporous silica nanoparticles (MSNs) in BC. By encapsulating a pH-responsive dye in the MSNs, wound dressings for continuous pH sensing with spatiotemporal resolution were developed. The pH responsive BC-based nanocomposites demonstrated excellent wound dressing properties, with respect to conformability, mechanical properties, and water vapor transmission rate. In addition to facilitating rapid colorimetric assessment of wound pH, this strategy for generating functional BC-MSN nanocomposites can be further be adapted for encapsulation and release of bioactive compounds for treatment of hard-to-heal wounds, enabling development of novel wound care materials.

4.
Polymers (Basel) ; 14(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36501498

RESUMO

Poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB)-based nanocomposite films were prepared with bio-based additives (CNCs and ChNCs) and oligomer lactic acid (OLA) compatibilizer using extrusion and then blown to films at pilot scale. The aim was to identify suitable material formulations and nanocomposite production processes for film production at a larger scale targeting food packaging applications. The film-blowing process for both the PLA-PHB blend and CNC-nanocomposite was unstable and led to non-homogeneous films with wrinkles and creases, while the blowing of the ChNC-nanocomposite was stable and resulted in a smooth and homogeneous film. The optical microscopy of the blown nanocomposite films indicated well-dispersed chitin nanocrystals while the cellulose crystals were agglomerated to micrometer-size particles. The addition of the ChNCs also resulted in the improved mechanical performance of the PLA-PHB blend due to well-dispersed crystals in the nanoscale as well as the interaction between biopolymers and the chitin nanocrystals. The strength increased from 27 MPa to 37 MPa compared to the PLA-PHB blend and showed almost 36 times higher elongation at break resulting in 10 times tougher material. Finally, the nanocomposite film with ChNCs showed improved oxygen barrier performance as well as faster degradation, indicating its potential exploitation for packaging applications.

5.
Nanomaterials (Basel) ; 12(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36234576

RESUMO

Cellulose nanofibrils can be derived from the native load-bearing cellulose microfibrils in wood. These microfibrils are synthesized by a cellulose synthase enzyme complex that resides in the plasma membrane of developing wood cells. It was previously shown that transgenic hybrid aspen trees with reduced expression of CSI1 have different wood mechanics and cellulose microfibril properties. We hypothesized that these changes in the native cellulose may affect the quality of the corresponding nanofibrils. To test this hypothesis, wood from wild-type and transgenic trees with reduced expression of CSI1 was subjected to oxidative nanofibril isolation. The transgenic wood-extracted nanofibrils exhibited a significantly lower suspension viscosity and estimated surface area than the wild-type nanofibrils. Furthermore, the nanofibril networks manufactured from the transgenics exhibited high stiffness, as well as reduced water uptake, tensile strength, strain-to-break, and degree of polymerization. Presumably, the difference in wood properties caused by the decreased expression of CSI1 resulted in nanofibrils with distinctive qualities. The observed changes in the physicochemical properties suggest that the differences were caused by changes in the apparent nanofibril aspect ratio and surface accessibility. This study demonstrates the possibility of influencing wood-derived nanofibril quality through the genetic engineering of trees.

6.
Nanomaterials (Basel) ; 12(20)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36296820

RESUMO

Technical lignins, kraft, soda, lignoboost, and hydrolysis lignins were used for the production of carbon particles at different carbonization temperatures, 1000 °C and 1400 °C. The results showed that the lignin source and carbonization temperature significantly influenced the carbon quality and microstructure of the carbon particles. Soda lignin carbonized up to 1400 °C showed higher degree of graphitization and exhibited the highest electrical conductivity of 335 S·m-1, which makes it suitable for applications, such as electromagnetic interference shielding and conductive composite based structural energy storage devices. The obtained carbon particles also showed high surface area and hierarchical pore structure. Kraft lignin carbonized up to 1400 °C gives the highest BET surface area of 646 m2 g-1, which makes it a good candidate for electrode materials in energy storage applications. The energy storage application has been validated in a three-electrode set up device, and a specific capacitance of 97.2 F g-1 was obtained at a current density of 0.1 A g-1 while an energy density of 1.1 Wh kg-1 was observed at a power density of 50 W kg-1. These unique characteristics demonstrated the potential of kraft lignin-based carbon particles for electrochemical energy storage applications.

7.
ACS Appl Polym Mater ; 4(9): 6592-6601, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36119407

RESUMO

Polylactic acid (PLA) is a biopolymer that has potential for use in food packaging applications; however, its low crystallinity and poor gas barrier properties limit its use. This study aimed to increase the understanding of the structure property relation of biopolymer blends and their nanocomposites. The crystallinity of the final materials and their effect on barrier properties was studied. Two strategies were performed: first, different concentrations of poly(hydroxybutyrate) (PHB; 10, 25, and 50 wt %) were compounded with PLA to facilitate the PHB spherulite development, and then, for further increase of the overall crystallinity, glycerol triacetate (GTA) functionalized chitin nanocrystals (ChNCs) were added. The PLA:PHB blend with 25 wt % PHB showed the formation of many very small PHB spherulites with the highest PHB crystallinity among the examined compositions and was selected as the matrix for the ChNC nanocomposites. Then, ChNCs with different concentrations (0.5, 1, and 2 wt %) were added to the 75:25 PLA:PHB blend using the liquid-assisted extrusion process in the presence of GTA. The addition of the ChNCs resulted in an improvement in the crystallization rate and degree of PHB crystallinity as well as mechanical properties. The nanocomposite with the highest crystallinity resulted in greatly decreased oxygen (O) and carbon dioxide (CO2) permeability and increased the overall mechanical properties compared to the blend with GTA. This study shows that the addition ChNCs in PLA:PHB can be a possible way to reach suitable gas barrier properties for food packaging films.

8.
Nanomaterials (Basel) ; 12(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269306

RESUMO

In this study, the possibility of adding nanocellulose and its dispersion to polyamide 6 (PA6), a polymer with a high melting temperature, is investigated using melt extrusion. The main challenges of the extrusion of these materials are achieving a homogeneous dispersion and avoiding the thermal degradation of nanocellulose. These challenges are overcome by using an aqueous suspension of never-dried nanocellulose, which is pumped into the molten polymer without any chemical modification or drying. Furthermore, polyethylene glycol is tested as a dispersant for nanocellulose. The dispersion, thermal degradation, and mechanical and viscoelastic properties of the nanocomposites are studied. The results show that the dispersant has a positive impact on the dispersion of nanocellulose and that the liquid-assisted melt compounding does not cause the degradation of nanocellulose. The addition of only 0.5 wt.% nanocellulose increases the stiffness of the neat polyamide 6 from 2 to 2.3 GPa and shifts the tan δ peak toward higher temperatures, indicating an interaction between PA6 and nanocellulose. The addition of the dispersant decreases the strength and modulus but has a significant effect on the elongation and toughness. To further enhance the mechanical properties of the nanocomposites, solid-state drawing is used to create an oriented structure in the polymer and nanocomposites. The orientation greatly improves its mechanical properties, and the oriented nanocomposite with polyethylene glycol as dispersant exhibits the best alignment and properties: with orientation, the strength increases from 52 to 221 MPa, modulus from 1.4 to 2.8 GPa, and toughness 30 to 33 MJ m-3 in a draw ratio of 2.5. This study shows that nanocellulose can be added to PA6 by liquid-assisted extrusion with good dispersion and without degradation and that the orientation of the structure is a highly-effective method for producing thermoplastic nanocomposites with excellent mechanical properties.

9.
Polymers (Basel) ; 14(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35160551

RESUMO

This study focuses on the use of pilot-scale produced polyhydroxy butyrate (PHB) biopolymer and chitin nanocrystals (ChNCs) in two different concentrated (1 and 5 wt.%) nanocomposites. The nanocomposites were compounded using a twin-screw extruder and calendered into sheets. The crystallization was studied using polarized optical microscopy and differential scanning calorimetry, the thermal properties were studied using thermogravimetric analysis, the viscosity was studied using a shear rheometer, the mechanical properties were studied using conventional tensile testing, and the morphology of the prepared material was studied using optical microscopy and scanning electron microscopy. The results showed that the addition of ChNCs significantly affected the crystallization of PHB, resulting in slower crystallization, lower overall crystallinity, and smaller crystal size. Furthermore, the addition of ChNCs resulted in increased viscosity in the final formulations. The calendering process resulted in slightly aligned sheets and the nanocomposites with 5 wt.% ChNCs evaluated along the machine direction showed the highest mechanical properties, the strength increased from 24 to 33 MPa, while the transversal direction with lower initial strength at 14 MPa was improved to 21 MPa.

10.
Nanomaterials (Basel) ; 11(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34947658

RESUMO

The orientation of polymer composites is one way to increase the mechanical properties of the material in a desired direction. In this study, the aim was to orient chitin nanocrystal (ChNC)-reinforced poly(lactic acid) (PLA) nanocomposites by combining two techniques: calendering and solid-state drawing. The effect of orientation on thermal properties, crystallinity, degree of orientation, mechanical properties and microstructure was studied. The orientation affected the thermal and structural behavior of the nanocomposites. The degree of crystallinity increased from 8% for the isotropic compression-molded films to 53% for the nanocomposites drawn with the highest draw ratio. The wide-angle X-ray scattering results confirmed an orientation factor of 0.9 for the solid-state drawn nanocomposites. The mechanical properties of the oriented nanocomposite films were significantly improved by the orientation, and the pre-orientation achieved by film calendering showed very positive effects on solid-state drawn nanocomposites: The highest mechanical properties were achieved for pre-oriented nanocomposites. The stiffness increased from 2.3 to 4 GPa, the strength from 37 to 170 MPa, the elongation at break from 3 to 75%, and the work of fracture from 1 to 96 MJ/m3. This study demonstrates that the pre-orientation has positive effect on the orientation of the nanocomposites structure and that it is an extremely efficient means to produce films with high strength and toughness.

11.
Biomacromolecules ; 22(9): 3800-3809, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34510907

RESUMO

Considering the growing use of cellulose in various applications, knowledge and understanding of its physical properties become increasingly important. Thermal conductivity is a key property, but its variation with porosity and density is unknown, and it is not known if such a variation is affected by fiber size and temperature. Here, we determine the relationships by measurements of the thermal conductivity of cellulose fibers (CFs) and cellulose nanofibers (CNFs) derived from commercial birch pulp as a function of pressure and temperature. The results show that the thermal conductivity varies relatively weakly with density (ρsample = 1340-1560 kg m-3) and that its temperature dependence is independent of density, porosity, and fiber size for temperatures in the range 80-380 K. The universal temperature and density dependencies of the thermal conductivity of a random network of CNFs are described by a third-order polynomial function (SI-units): κCNF = (0.0787 + 2.73 × 10-3·T - 7.6749 × 10-6·T2 + 8.4637 × 10-9·T3)·(ρsample/ρ0)2, where ρ0 = 1340 kg m-3 and κCF = 1.065·κCNF. Despite a relatively high degree of crystallinity, both CF and CNF samples show amorphous-like thermal conductivity, that is, it increases with increasing temperature. This appears to be due to the nano-sized elementary fibrils of cellulose, which explains that the thermal conductivity of CNFs and CFs shows identical behavior and differs by only ca. 6%. The nano-sized fibrils effectively limit the phonon mean free path to a few nanometers for heat conduction across fibers, and it is only significantly longer for highly directed heat conduction along fibers. This feature of cellulose makes it easier to apply in applications that require low thermal conductivity combined with high strength; the weak density dependence of the thermal conductivity is a particularly useful property when the material is subjected to high loads. The results for thermal conductivity also suggest that the crystalline structures of cellulose remain stable up to at least 0.7 GPa.


Assuntos
Celulose , Nanofibras , Porosidade , Temperatura , Condutividade Térmica
12.
Molecules ; 26(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34361717

RESUMO

The development of bio-based nanocomposites is of high scientific and industrial interest, since they offer excellent advantages in creating functional materials. However, dispersion and distribution of the nanomaterials inside the polymer matrix is a key challenge to achieve high-performance functional nanocomposites. In this context, for better dispersion, biobased triethyl citrate (TEC) as a dispersing agent in a liquid-assisted extrusion process was used to prepare the nanocomposites of poly (lactic acid) (PLA) and chitin nanocrystals (ChNCs). The aim was to identify the effect of the TEC content on the dispersion of ChNCs in the PLA matrix and the manufacturing of a functional nanocomposite. The nanocomposite film's optical properties; microstructure; migration of the additive and nanocomposites' thermal, mechanical and rheological properties, all influenced by the ChNC dispersion, were studied. The microscopy study confirmed that the dispersion of the ChNCs was improved with the increasing TEC content, and the best dispersion was found in the nanocomposite prepared with 15 wt% TEC. Additionally, the nanocomposite with the highest TEC content (15 wt%) resembled the mechanical properties of commonly used polymers like polyethylene and polypropylene. The addition of ChNCs in PLA-TEC15 enhanced the melt viscosity, as well as melt strength, of the polymer and demonstrated antibacterial activity.


Assuntos
Antibacterianos/síntese química , Quitina/química , Citratos/química , Nanocompostos/química , Nanopartículas/química , Poliésteres/química , Antibacterianos/farmacologia , Módulo de Elasticidade , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Nanocompostos/ultraestrutura , Nanopartículas/ultraestrutura , Reologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Resistência à Tração , Viscosidade
13.
ACS Appl Mater Interfaces ; 13(34): 40853-40862, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34403248

RESUMO

The design and high-throughput manufacturing of thin renewable energy devices with high structural and atomic configurational stability are crucial for the fabrication of green electronics. Yet, this concept is still in its infancy. In this work, we report the extraordinary durability of thin molecular interlayered organic flexible energy devices based on chemically tuned cellulose nanofiber transparent films that outperform glass by decreasing the substrate weight by 50%. The nanofabricated flexible thin film has an exceptionally low thermal coefficient of expansion of 1.8 ppm/K and a stable atomic configuration under a harsh fabrication condition (over 190 °C for an extended period of 5 h). A flexible optoelectronic device using the same renewable cellulose nanofiber film substrate was found to be functionally operational over a life span of 5 years under an intermittent operating condition. The success of this device's stability opens up an entirely new frontier of applications of flexible electronics.

14.
Biomacromolecules ; 22(8): 3202-3215, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34254779

RESUMO

In this study, ginger residue from juice production was evaluated as a raw material resource for preparation of nanofiber hydrogels with multifunctional properties for advanced wound dressing applications. Alkali treatment was applied to adjust the chemical composition of ginger fibers followed by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation prior to nanofiber isolation. The effect of alkali treatment on hydrogel properties assembled through vacuum filtration without addition of any chemical cross-linker was evaluated. An outstanding absorption ability of 6200% combined with excellent mechanical properties, tensile strength of 2.1 ± 0.2 MPa, elastic modulus of 15.3 ± 0.3 MPa, and elongation at break of 25.1%, was achieved without alkali treatment. Furthermore, the absorption capacity was tunable by applying alkali treatment at different concentrations and by adjusting the hydrogel grammage. Cytocompatibility evaluation of the hydrogels showed no significant effect on human fibroblast proliferation in vitro. Ginger essential oil was used to functionalize the hydrogels by providing antimicrobial activity, furthering their potential as a multifunctional wound dressing.


Assuntos
Nanofibras , Zingiber officinale , Antibacterianos/farmacologia , Bandagens , Humanos , Hidrogéis
15.
ACS Appl Mater Interfaces ; 13(29): 34899-34909, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34255967

RESUMO

The next generation of green insulation materials is being developed to provide safer and more sustainable alternatives to conventional materials. Bio-based cellulose nanofiber (CNF) aerogels offer excellent thermal insulation properties; however, their high flammability restricts their application. In this study, the design concept for the development of a multifunctional and non-toxic insulation material is inspired by the natural composition of seaweed, comprising both alginate and cellulose. The approach includes three steps: first, CNFs were separated from alginate-rich seaweed to obtain a resource-efficient, fully bio-based, and inherently flame-retardant material; second, ice-templating, followed by freeze-drying, was employed to form an anisotropic aerogel for effective insulation; and finally, a simple crosslinking approach was applied to improve the flame-retardant behavior and stability. At a density of 0.015 g cm-3, the lightweight anisotropic aerogels displayed favorable mechanical properties, including a compressive modulus of 370 kPa, high thermal stability, low thermal conductivity (31.5 mW m-1 K-1), considerable flame retardancy (0.053 mm s-1), and self-extinguishing behavior, where the inherent characteristics were considerably improved by crosslinking. Different concentrations of the crosslinker altered the mechanical properties, while the anisotropic structure influenced the mechanical properties, combustion velocity, and to some extent thermal conductivity. Seaweed-derived aerogels possess intrinsic characteristics that could serve as a template for the future development of sustainable high-performance insulation materials.

16.
Nanomaterials (Basel) ; 11(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33947163

RESUMO

Wood from field-grown poplars with different genotypes and varying lignin content (17.4 wt % to 30.0 wt %) were subjected to one-pot 2,2,6,6-Tetramethylpiperidin-1-yl)oxyl catalyzed oxidation and high-pressure homogenization in order to investigate nanofibrillation following simultaneous delignification and cellulose oxidation. When comparing low and high lignin wood it was found that the high lignin wood was more easily fibrillated as indicated by a higher nanofibril yield (68% and 45%) and suspension viscosity (27 and 15 mPa·s). The nanofibrils were monodisperse with diameter ranging between 1.2 and 2.0 nm as measured using atomic force microscopy. Slightly less cellulose oxidation (0.44 and 0.68 mmol·g-1) together with a reduced process yield (36% and 44%) was also found which showed that the removal of a larger amount of lignin increased the efficiency of the homogenization step despite slightly reduced oxidation of the nanofibril surfaces. The surface area of oxidized high lignin wood was also higher than low lignin wood (114 m2·g-1 and 76 m2·g-1) which implicates porosity as a factor that can influence cellulose nanofibril isolation from wood in a beneficial manner.

17.
Nanomaterials (Basel) ; 11(3)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800162

RESUMO

Various carbon materials have been developed for energy storage applications to address the increasing energy demand in the world. However, the environmentally friendly, renewable, and nontoxic bio-based carbon resources have not been extensively investigated towards high-performance energy storage materials. Here, we report an anisotropic, hetero-porous, high-surface area carbon aerogel prepared from renewable resources achieving an excellent electrical double-layer capacitance. Two different green, abundant, and carbon-rich lignins which can be extracted from various biomasses, have been selected as raw materials, i.e., kraft and soda lignins, resulting in clearly distinct physical, structural as well as electrochemical characteristics of the carbon aerogels after carbonization. The obtained green carbon aerogel based on kraft lignin not only demonstrates a competitive specific capacitance as high as 163 F g-1 and energy density of 5.67 Wh kg-1 at a power density of 50 W kg-1 when assembled as a two-electrode symmetric supercapacitor, but also shows outstanding compressive mechanical properties. This reveals the great potential of the carbon aerogels developed in this study for the next-generation energy storage applications requiring green and renewable resources, lightweight, robust storage ability, and reliable mechanical integrity.

18.
Nanomaterials (Basel) ; 11(2)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33672079

RESUMO

Finding renewable alternatives to the commonly used reinforcement materials in composites is attracting a significant amount of research interest. Nanocellulose is a promising candidate owing to its wide availability and favorable properties such as high Young's modulus. This study addressed the major problems inherent to cellulose nanocomposites, namely, controlling the fiber structure and obtaining a sufficient interfacial adhesion between nanocellulose and a non-hydrophilic matrix. Unidirectionally aligned cellulose nanofiber filament mats were obtained via ice-templating, and chemical vapor deposition was used to cover the filament surfaces with an aminosilane before impregnating the mats with a bio-epoxy resin. The process resulted in cellulose nanocomposites with an oriented structure and a strong fiber-matrix interface. Diffuse reflectance infrared Fourier transform and X-ray photoelectron spectroscopy studies revealed the presence of silane on the filaments. The improved interface, resulting from the surface treatment, was observable in electron microscopy images and was further confirmed by the significant increase in the tan delta peak temperature. The storage modulus of the matrix could be improved up to 2.5-fold with 18 wt% filament content and was significantly higher in the filament direction. Wide-angle X-ray scattering was used to study the orientation of cellulose nanofibers in the filament mats and the composites, and the corresponding orientation indices were 0.6 and 0.53, respectively, indicating a significant level of alignment.

19.
Polymers (Basel) ; 13(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672280

RESUMO

The use of bio-based residues is one of the key indicators towards sustainable development goals. In this work, bacterial cellulose, a residue from the fermentation of kombucha tea, was tested as a reinforcing nanofiber network in an emulsion-polymerized poly(methyl methacrylate) (PMMA) matrix. The use of the nanofiber network is facilitating the formation of nanocomposites with well-dispersed nanofibers without using organic solvents or expensive methodologies. Moreover, the bacterial cellulose network structure can serve as a template for the emulsion polymerization of PMMA. The morphology, size, crystallinity, water uptake, and mechanical properties of the kombucha bacterial cellulose (KBC) network were studied. The results showed that KBC nanofibril diameters were ranging between 20-40 nm and the KBC was highly crystalline, >90%. The 3D network was lightweight and porous material, having a density of only 0.014 g/cm3. Furthermore, the compressed KBC network had very good mechanical properties, the E-modulus was 8 GPa, and the tensile strength was 172 MPa. The prepared nanocomposites with a KBC concentration of 8 wt.% were translucent with uniform structure confirmed with scanning electron microscopy study, and furthermore, the KBC network was homogeneously impregnated with the PMMA matrix. The mechanical testing of the nanocomposite showed high stiffness compared to the neat PMMA. A simple simulation of the tensile strength was used to understand the limited strain and strength given by the bacterial cellulose network. The excellent properties of the final material demonstrate the capability of a residue of kombucha fermentation as an excellent nanofiber template for use in polymer nanocomposites.

20.
Nanomaterials (Basel) ; 10(12)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371185

RESUMO

In this work, two different strategies for the development of amaranth protein isolate (API)-based films were evaluated. In the first strategy, ultrathin films were produced through spin-coating nanolayering, and the effects of protein concentration in the spin coating solution, rotational speed, and number of layers deposited on the properties of the films were evaluated. In the second strategy, cellulose nanocrystals (CNCs) were incorporated through a casting methodology. The morphology, optical properties, and moisture affinity of the films (water contact angle, solubility, water content) were characterized. Both strategies resulted in homogeneous films with good optical properties, decreased hydrophilic character (as deduced from the contact angle measurements and solubility), and improved mechanical properties when compared with the neat API-films. However, both the processing method and film thickness influenced the final properties of the films, being the ones processed through spin coating more transparent, less hydrophilic, and less water-soluble. Incorporation of CNCs above 10% increased hydrophobicity, decreasing the water solubility of the API films and significantly enhancing material toughness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA