Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
2.
Cell Rep ; 43(4): 114076, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607917

RESUMO

The severe acute respiratory syndrome coronavirus 2 pandemic is characterized by the emergence of novel variants of concern (VOCs) that replace ancestral strains. Here, we dissect the complex selective pressures by evaluating variant fitness and adaptation in human respiratory tissues. We evaluate viral properties and host responses to reconstruct forces behind D614G through Omicron (BA.1) emergence. We observe differential replication in airway epithelia, differences in cellular tropism, and virus-induced cytotoxicity. D614G accumulates the most mutations after infection, supporting zoonosis and adaptation to the human airway. We perform head-to-head competitions and observe the highest fitness for Gamma and Delta. Under these conditions, RNA recombination favors variants encoding the B.1.617.1 lineage 3' end. Based on viral growth kinetics, Alpha, Gamma, and Delta exhibit increased fitness compared to D614G. In contrast, the global success of Omicron likely derives from increased transmission and antigenic variation. Our data provide molecular evidence to support epidemiological observations of VOC emergence.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/fisiologia , SARS-CoV-2/genética , COVID-19/virologia , COVID-19/transmissão , Replicação Viral , Mutação/genética , Mucosa Respiratória/virologia , Aptidão Genética , Animais , Células Epiteliais/virologia , Chlorocebus aethiops , Adaptação Fisiológica/genética , Células Vero
3.
bioRxiv ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38370820

RESUMO

In vitro models play a major role in studying airway physiology and disease. However, the native lung's complex tissue architecture and non-epithelial cell lineages are not preserved in these models. Ex vivo tissue models could overcome in vitro limitations, but methods for long-term maintenance of ex vivo tissue has not been established. We describe methods to culture human large airway explants, small airway explants, and precision-cut lung slices for at least 14 days. Human airway explants recapitulate genotype-specific electrophysiology, characteristic epithelial, endothelial, stromal and immune cell populations, and model viral infection after 14 days in culture. These methods also maintain mouse, rabbit, and pig tracheal explants. Notably, intact airway tissue can be cryopreserved, thawed, and used to generate explants with recovery of function 14 days post-thaw. These studies highlight the broad applications of airway tissue explants and their use as translational intermediates between in vitro and in vivo studies.

4.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L292-L302, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38252871

RESUMO

Since its invention in the late 1980s, the air-liquid-interface (ALI) culture system has been the standard in vitro model for studying human airway biology and pulmonary diseases. However, in a conventional ALI system, cells are cultured on a porous plastic membrane that is much stiffer than human airway tissues. Here, we develop a gel-ALI culture system by simply coating the plastic membrane with a thin layer of hydrogel with tunable stiffness matching that of healthy and fibrotic airway tissues. We determine the optimum gel thickness that does not impair the transport of nutrients and biomolecules essential to cell growth. We show that the gel-ALI system allows human bronchial epithelial cells (HBECs) to proliferate and differentiate into pseudostratified epithelium. Furthermore, we discover that HBECs migrate significantly faster on hydrogel substrates with stiffness matching that of fibrotic lung tissues, highlighting the importance of mechanical cues in human airway remodeling. The developed gel-ALI system provides a facile approach to studying the effects of mechanical cues in human airway biology and in modeling pulmonary diseases.NEW & NOTEWORTHY In a conventional ALI system, cells are cultured on a plastic membrane that is much stiffer than human airway tissues. We develop a gel-ALI system by coating the plastic membrane with a thin layer of hydrogel with tunable stiffness matching that of healthy and fibrotic airway tissues. We discover that human bronchial epithelial cells migrate significantly faster on hydrogel substrates with pathological stiffness, highlighting the importance of mechanical cues in human airway remodeling.


Assuntos
Remodelação das Vias Aéreas , Pneumopatias , Humanos , Células Epiteliais , Pulmão , Hidrogéis , Células Cultivadas
5.
Am J Respir Crit Care Med ; 209(4): 374-389, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38016030

RESUMO

Rationale: Non-cystic fibrosis bronchiectasis (NCFB) may originate in bronchiolar regions of the lung. Accordingly, there is a need to characterize the morphology and molecular characteristics of NCFB bronchioles. Objectives: Test the hypothesis that NCFB exhibits a major component of bronchiolar disease manifest by mucus plugging and ectasia. Methods: Morphologic criteria and region-specific epithelial gene expression, measured histologically and by RNA in situ hybridization and immunohistochemistry, identified proximal and distal bronchioles in excised NCFB lungs. RNA in situ hybridization and immunohistochemistry assessed bronchiolar mucus accumulation and mucin gene expression. CRISPR-Cas9-mediated IL-1R1 knockout in human bronchial epithelial cultures tested IL-1α and IL-1ß contributions to mucin production. Spatial transcriptional profiling characterized NCFB distal bronchiolar gene expression. Measurements and Main Results: Bronchiolar perimeters and lumen areas per section area were increased in proximal, but not distal, bronchioles in NCFB versus control lungs, suggesting proximal bronchiolectasis. In NCFB, mucus plugging was observed in ectatic proximal bronchioles and associated nonectatic distal bronchioles in sections with disease. MUC5AC and MUC5B mucins were upregulated in NCFB proximal bronchioles, whereas MUC5B was selectively upregulated in distal bronchioles. Bronchiolar mucus plugs were populated by IL-1ß-expressing macrophages. NCFB sterile sputum supernatants induced human bronchial epithelial MUC5B and MUC5AC expression that was >80% blocked by IL-1R1 ablation. Spatial transcriptional profiling identified upregulation of genes associated with secretory cells, hypoxia, interleukin pathways, and IL-1ß-producing macrophages in mucus plugs and downregulation of epithelial ciliogenesis genes. Conclusions: NCFB exhibits distinctive proximal and distal bronchiolar disease. Both bronchiolar regions exhibit bronchiolar secretory cell features and mucus plugging but differ in mucin gene regulation and ectasia.


Assuntos
Bronquiectasia , Fibrose Cística , Humanos , Bronquíolos , Dilatação Patológica , Bronquiectasia/genética , Mucinas/metabolismo , Interleucina-1beta , Fibrose , RNA , Mucina-5AC/genética
6.
Lancet Infect Dis ; 23(11): 1244-1256, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399831

RESUMO

BACKGROUND: Previous SARS-CoV-2 infection and vaccination, coupled with the rapid evolution of SARS-CoV-2 variants, have modified COVID-19 clinical manifestations. We aimed to characterise the clinical symptoms of COVID-19 individuals in omicron BA.2 and BA.5 Japanese pandemic periods to identify omicron and subvariant associations between symptoms, immune status, and clinical outcomes. METHODS: In this registry-based observational study, individuals registered in Sapporo's web-based COVID-19 information system entered 12 pre-selected symptoms, days since symptom onset, vaccination history, SARS-CoV-2 infection history, and background. Eligibility criteria included symptomatic individuals who tested positive for SARS-CoV-2 (PCR or antigen test), and individuals who were not tested for SARS-CoV-2 but developed new symptoms after a household member tested positive for SARS-CoV-2. Symptom prevalence, variables associated with symptoms, and symptoms associated with progression to severe disease were analysed. FINDINGS: Data were collected and analysed between April 25 and Sept 25, 2022. For 157 861 omicron-infected symptomatic individuals, cough was the most common symptom (99 032 [62·7%] patients), followed by sore throat (95 838 [60·7%] patients), nasal discharge (69 968 [44·3%] patients), and fever (61 218 [38·8%] patients). Omicron BA.5 infection was associated with a higher prevalence of systemic symptoms than BA.2 in vaccinated and unvaccinated individuals (adjusted odds ratio [OR] for fever: 2·18 [95% CI 2·12-2·25]). Omicron breakthrough-infected individuals with three or more vaccinations or previous infection were less likely to exhibit systemic symptoms (fever 0·50 [0·49-0·51]), but more likely to exhibit upper respiratory symptoms (sore throat 1·33 [1·29-1·36]; nasal discharge 1·84 [1·80-1·89]). Infected older individuals (≥65 years) had lower odds for all symptoms. However, when symptoms were manifest, systemic symptoms were associated with increased odds for severe disease (dyspnoea 3·01 [1·84-4·91]; fever 2·93 [1·89-4·52]), whereas upper respiratory symptoms were associated with decreased odds (sore throat 0·38 [0·24-0·63]; nasal discharge 0·48 [0·28-0·81]). INTERPRETATION: Host immunological status, omicron subvariant, and age were associated with a spectrum of COVID-19 symptoms and outcomes. BA.5 produced a higher systemic symptom prevalence than BA.2. Vaccination and previous infection reduced systemic symptom prevalence and improved outcomes but increased upper respiratory tract symptom prevalence. Systemic, but not upper respiratory, symptoms in older people heralded severe disease. Our findings could serve as a practical guide to use COVID-19 symptoms to appropriately modify health-care strategies and predict clinical outcomes for older patients with omicron infections. FUNDING: Japan Agency for Medical Research and Development.


Assuntos
COVID-19 , Faringite , Humanos , Idoso , COVID-19/epidemiologia , SARS-CoV-2/genética , Japão/epidemiologia , Sistema de Registros , Febre , Dor
7.
Sci Transl Med ; 15(699): eabo7728, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37285404

RESUMO

Unlike solid organs, human airway epithelia derive their oxygen from inspired air rather than the vasculature. Many pulmonary diseases are associated with intraluminal airway obstruction caused by aspirated foreign bodies, virus infection, tumors, or mucus plugs intrinsic to airway disease, including cystic fibrosis (CF). Consistent with requirements for luminal O2, airway epithelia surrounding mucus plugs in chronic obstructive pulmonary disease (COPD) lungs are hypoxic. Despite these observations, the effects of chronic hypoxia (CH) on airway epithelial host defense functions relevant to pulmonary disease have not been investigated. Molecular characterization of resected human lungs from individuals with a spectrum of muco-obstructive lung diseases (MOLDs) or COVID-19 identified molecular features of chronic hypoxia, including increased EGLN3 expression, in epithelia lining mucus-obstructed airways. In vitro experiments using cultured chronically hypoxic airway epithelia revealed conversion to a glycolytic metabolic state with maintenance of cellular architecture. Chronically hypoxic airway epithelia unexpectedly exhibited increased MUC5B mucin production and increased transepithelial Na+ and fluid absorption mediated by HIF1α/HIF2α-dependent up-regulation of ß and γENaC (epithelial Na+ channel) subunit expression. The combination of increased Na+ absorption and MUC5B production generated hyperconcentrated mucus predicted to perpetuate obstruction. Single-cell and bulk RNA sequencing analyses of chronically hypoxic cultured airway epithelia revealed transcriptional changes involved in airway wall remodeling, destruction, and angiogenesis. These results were confirmed by RNA-in situ hybridization studies of lungs from individuals with MOLD. Our data suggest that chronic airway epithelial hypoxia may be central to the pathogenesis of persistent mucus accumulation in MOLDs and associated airway wall damage.


Assuntos
COVID-19 , Fibrose Cística , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Pulmão/metabolismo , Muco/metabolismo , Hipóxia/metabolismo
8.
Sci Rep ; 13(1): 10137, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349353

RESUMO

The human airways are complex structures with important interactions between cells, extracellular matrix (ECM) proteins and the biomechanical microenvironment. A robust, well-differentiated in vitro culture system that accurately models these interactions would provide a useful tool for studying normal and pathological airway biology. Here, we report the development and characterization of a physiologically relevant air-liquid interface (ALI) 3D airway 'organ tissue equivalent' (OTE) model with three novel features: native pulmonary fibroblasts, solubilized lung ECM, and hydrogel substrate with tunable stiffness and porosity. We demonstrate the versatility of the OTE model by evaluating the impact of these features on human bronchial epithelial (HBE) cell phenotype. Variations of this model were analyzed during 28 days of ALI culture by evaluating epithelial confluence, trans-epithelial electrical resistance, and epithelial phenotype via multispectral immuno-histochemistry and next-generation sequencing. Cultures that included both solubilized lung ECM and native pulmonary fibroblasts within the hydrogel substrate formed well-differentiated ALI cultures that maintained a barrier function and expressed mature epithelial markers relating to goblet, club, and ciliated cells. Modulation of hydrogel stiffness did not negatively impact HBE differentiation and could be a valuable variable to alter epithelial phenotype. This study highlights the feasibility and versatility of a 3D airway OTE model to model the multiple components of the human airway 3D microenvironment.


Assuntos
Células Epiteliais , Pulmão , Humanos , Células Cultivadas , Células Epiteliais/metabolismo , Fenótipo , Proteínas da Matriz Extracelular/metabolismo , Hidrogéis/metabolismo
9.
medRxiv ; 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36798223

RESUMO

Background: Previous SARS-CoV-2 infection and vaccination, coupled to rapid evolution of SARS-CoV-2 variants, have modified COVID-19 clinical manifestations. We characterized clinical symptoms of COVID-19 individuals in omicron BA.2 and BA.5 Japanese pandemic periods to identify omicron and subvariant associations between symptoms, immune status, and clinical outcomes. Methods: Individuals registered in Sapporo's web-based COVID-19 information system entered 12 pre-selected symptoms, days since symptom onset, vaccination history, SARS-CoV-2 infection history, and background. Symptom frequencies, variables associated with symptoms, and symptoms associated with progression to severe disease were analysed. Results: For all omicron-infected individuals, cough was the most common symptom (62.7%), followed by sore throat (60.7%), nasal discharge (44.3%), and fever (38.8%). Omicron BA.5 infection was associated with a higher symptom burden than BA.2 in vaccinated and unvaccinated individuals. Omicron breakthrough-infected individuals with ≥ 3 vaccinations or previous infection were less likely to exhibit systemic symptoms, but more likely to exhibit upper respiratory symptoms. Infected elderly individuals had lower odds for all symptoms, but, when symptoms were manifest, systemic symptoms were associated with an increased risk, whereas upper respiratory symptoms with a decreased risk, of severe disease. Conclusion: Host immunological status, omicron subvariant, and age were associated with a spectrum of COVID-19 symptoms and outcomes. BA.5 produced a greater symptom burden than BA.2. Vaccination and prior infection mitigated systemic symptoms and improved outcomes, but increased upper respiratory tract symptom burden. Systemic, but not upper respiratory, symptoms in the elderly heralded severe disease.

10.
Cell Host Microbe ; 31(2): 243-259.e6, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36563691

RESUMO

Elevated levels of cytokines IL-1ß and IL-6 are associated with severe COVID-19. Investigating the underlying mechanisms, we find that while primary human airway epithelia (HAE) have functional inflammasomes and support SARS-CoV-2 replication, they are not the source of IL-1ß released upon infection. In leukocytes, the SARS-CoV-2 E protein upregulates inflammasome gene transcription via TLR2 to prime, but not activate, inflammasomes. SARS-CoV-2-infected HAE supply a second signal, which includes genomic and mitochondrial DNA, to stimulate leukocyte IL-1ß release. Nuclease treatment, STING, and caspase-1 inhibition but not NLRP3 inhibition blocked leukocyte IL-1ß release. After release, IL-1ß stimulates IL-6 secretion from HAE. Therefore, infection alone does not increase IL-1ß secretion by either cell type. Rather, bi-directional interactions between the SARS-CoV-2-infected epithelium and immune bystanders stimulates both IL-1ß and IL-6, creating a pro-inflammatory cytokine circuit. Consistent with these observations, patient autopsy lungs show elevated myeloid inflammasome gene signatures in severe COVID-19.


Assuntos
COVID-19 , Inflamassomos , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-6 , SARS-CoV-2 , Citocinas/metabolismo , Interleucina-1beta/metabolismo
11.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36142171

RESUMO

Mucociliary clearance is a critical defense mechanism for the lungs governed by regionally coordinated epithelial cellular activities, including mucin secretion, cilia beating, and transepithelial ion transport. Cystic fibrosis (CF), an autosomal genetic disorder caused by the dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) channel, is characterized by failed mucociliary clearance due to abnormal mucus biophysical properties. In recent years, with the development of highly effective modulator therapies, the quality of life of a significant number of people living with CF has greatly improved; however, further understanding the cellular biology relevant to CFTR and airway mucus biochemical interactions are necessary to develop novel therapies aimed at restoring CFTR gene expression in the lungs. In this article, we discuss recent advances of transcriptome analysis at single-cell levels that revealed a heretofore unanticipated close relationship between secretory MUC5AC and MUC5B mucins and CFTR in the lungs. In addition, we review recent findings on airway mucus biochemical and biophysical properties, focusing on how mucin secretion and CFTR-mediated ion transport are integrated to maintain airway mucus homeostasis in health and how CFTR dysfunction and restoration of function affect mucus properties.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Depuração Mucociliar , Muco/metabolismo , Qualidade de Vida
12.
Am J Respir Crit Care Med ; 206(11): 1336-1352, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35816430

RESUMO

Rationale: The incidence and sites of mucus accumulation and molecular regulation of mucin gene expression in coronavirus (COVID-19) lung disease have not been reported. Objectives: To characterize the incidence of mucus accumulation and the mechanisms mediating mucin hypersecretion in COVID-19 lung disease. Methods: Airway mucus and mucins were evaluated in COVID-19 autopsy lungs by Alcian blue and periodic acid-Schiff staining, immunohistochemical staining, RNA in situ hybridization, and spatial transcriptional profiling. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected human bronchial epithelial (HBE) cultures were used to investigate mechanisms of SARS-CoV-2-induced mucin expression and synthesis and test candidate countermeasures. Measurements and Main Results: MUC5B and variably MUC5AC RNA concentrations were increased throughout all airway regions of COVID-19 autopsy lungs, notably in the subacute/chronic disease phase after SARS-CoV-2 clearance. In the distal lung, MUC5B-dominated mucus plugging was observed in 90% of subjects with COVID-19 in both morphologically identified bronchioles and microcysts, and MUC5B accumulated in damaged alveolar spaces. SARS-CoV-2-infected HBE cultures exhibited peak titers 3 days after inoculation, whereas induction of MUC5B/MUC5AC peaked 7-14 days after inoculation. SARS-CoV-2 infection of HBE cultures induced expression of epidermal growth factor receptor (EGFR) ligands and inflammatory cytokines (e.g., IL-1α/ß) associated with mucin gene regulation. Inhibiting EGFR/IL-1R pathways or administration of dexamethasone reduced SARS-CoV-2-induced mucin expression. Conclusions: SARS-CoV-2 infection is associated with a high prevalence of distal airspace mucus accumulation and increased MUC5B expression in COVID-19 autopsy lungs. HBE culture studies identified roles for EGFR and IL-1R signaling in mucin gene regulation after SARS-CoV-2 infection. These data suggest that time-sensitive mucolytic agents, specific pathway inhibitors, or corticosteroid administration may be therapeutic for COVID-19 lung disease.


Assuntos
COVID-19 , Humanos , Prevalência , SARS-CoV-2 , Mucina-5B/genética , Mucina-5AC/genética , Muco/metabolismo , Pulmão/metabolismo , Receptores ErbB , RNA/metabolismo
13.
mBio ; 13(4): e0084522, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35852317

RESUMO

Staphylococcus aureus, a major pathogen of community-acquired and nosocomial-associated infections, forms biofilms consisting of extracellular matrix-embedded cell aggregates. S. aureus biofilm formation on implanted medical devices can cause local and systemic infections due to the dispersion of cells from the biofilms. Usually, conventional antibiotic treatments are not effective against biofilm-related infections, and there is no effective treatment other than removing the contaminated devices. Therefore, the development of new therapeutic agents to combat biofilm-related infections is urgently needed. We conducted high-throughput screening of S. aureus biofilm inhibitors and obtained a small compound, JBD1. JBD1 strongly inhibits biofilm formation of S. aureus, including methicillin-resistant strains. In addition, JBD1 activated the respiratory activity of S. aureus cells and increased the sensitivity to aminoglycosides. Furthermore, it was shown that the metabolic profile of S. aureus was significantly altered in the presence of JBD1 and that metabolic remodeling was induced. Surprisingly, these JBD1-induced phenotypes were blocked by adding an excess amount of the electron carrier menaquinone to suppress respiratory activation. These results indicate that JBD1 induces biofilm inhibition and metabolic remodeling through respiratory activation. This study demonstrates that compounds that enhance the respiratory activity of S. aureus may be potential leads in the development of therapeutic agents for chronic S. aureus-biofilm-related infections. IMPORTANCE Chronic infections caused by Staphylococcus aureus are characterized by biofilm formation, suggesting that methods to control biofilm formation may be of therapeutic value. The small compound JBD1 showed biofilm inhibitory activity and increased sensitivity to aminoglycosides and respiratory activity of S. aureus. Additionally, transcriptomic and metabolomic analyses demonstrated that JBD1 induced metabolic remodeling. All JBD1-induced phenotypes were suppressed by the extracellular addition of an excess amount of menaquinone, indicating that JBD1-mediated respiratory stimulation inhibits biofilm formation and triggers metabolic remodeling in S. aureus. These findings suggest a strategy for developing new therapeutic agents for chronic S. aureus infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Biofilmes , Respiração Celular , Humanos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/genética , Vitamina K 2/farmacologia
14.
Sci Transl Med ; 14(664): eabo5070, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35857635

RESUMO

A subset of individuals who recover from coronavirus disease 2019 (COVID-19) develop post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (PASC), but the mechanistic basis of PASC-associated lung abnormalities suffers from a lack of longitudinal tissue samples. The mouse-adapted SARS-CoV-2 strain MA10 produces an acute respiratory distress syndrome in mice similar to humans. To investigate PASC pathogenesis, studies of MA10-infected mice were extended from acute to clinical recovery phases. At 15 to 120 days after virus clearance, pulmonary histologic findings included subpleural lesions composed of collagen, proliferative fibroblasts, and chronic inflammation, including tertiary lymphoid structures. Longitudinal spatial transcriptional profiling identified global reparative and fibrotic pathways dysregulated in diseased regions, similar to human COVID-19. Populations of alveolar intermediate cells, coupled with focal up-regulation of profibrotic markers, were identified in persistently diseased regions. Early intervention with antiviral EIDD-2801 reduced chronic disease, and early antifibrotic agent (nintedanib) intervention modified early disease severity. This murine model provides opportunities to identify pathways associated with persistent SARS-CoV-2 pulmonary disease and test countermeasures to ameliorate PASC.


Assuntos
COVID-19 , Animais , Antivirais , COVID-19/complicações , Fibrose , Humanos , Pulmão/patologia , Camundongos , SARS-CoV-2
15.
Nat Genet ; 54(8): 1078-1089, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35879412

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a range of symptoms in infected individuals, from mild respiratory illness to acute respiratory distress syndrome. A systematic understanding of host factors influencing viral infection is critical to elucidate SARS-CoV-2-host interactions and the progression of Coronavirus disease 2019 (COVID-19). Here, we conducted genome-wide CRISPR knockout and activation screens in human lung epithelial cells with endogenous expression of the SARS-CoV-2 entry factors ACE2 and TMPRSS2. We uncovered proviral and antiviral factors across highly interconnected host pathways, including clathrin transport, inflammatory signaling, cell-cycle regulation, and transcriptional and epigenetic regulation. We further identified mucins, a family of high molecular weight glycoproteins, as a prominent viral restriction network that inhibits SARS-CoV-2 infection in vitro and in murine models. These mucins also inhibit infection of diverse respiratory viruses. This functional landscape of SARS-CoV-2 host factors provides a physiologically relevant starting point for new host-directed therapeutics and highlights airway mucins as a host defense mechanism.


Assuntos
COVID-19 , Animais , COVID-19/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Epigênese Genética , Humanos , Camundongos , Mucinas/genética , SARS-CoV-2
16.
mBio ; 13(4): e0145422, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35862771

RESUMO

Infectious diseases have shaped the human population genetic structure, and genetic variation influences the susceptibility to many viral diseases. However, a variety of challenges have made the implementation of traditional human Genome-wide Association Studies (GWAS) approaches to study these infectious outcomes challenging. In contrast, mouse models of infectious diseases provide an experimental control and precision, which facilitates analyses and mechanistic studies of the role of genetic variation on infection. Here we use a genetic mapping cross between two distinct Collaborative Cross mouse strains with respect to severe acute respiratory syndrome coronavirus (SARS-CoV) disease outcomes. We find several loci control differential disease outcome for a variety of traits in the context of SARS-CoV infection. Importantly, we identify a locus on mouse chromosome 9 that shows conserved synteny with a human GWAS locus for SARS-CoV-2 severe disease. We follow-up and confirm a role for this locus, and identify two candidate genes, CCR9 and CXCR6, that both play a key role in regulating the severity of SARS-CoV, SARS-CoV-2, and a distantly related bat sarbecovirus disease outcomes. As such we provide a template for using experimental mouse crosses to identify and characterize multitrait loci that regulate pathogenic infectious outcomes across species. IMPORTANCE Host genetic variation is an important determinant that predicts disease outcomes following infection. In the setting of highly pathogenic coronavirus infections genetic determinants underlying host susceptibility and mortality remain unclear. To elucidate the role of host genetic variation on sarbecovirus pathogenesis and disease outcomes, we utilized the Collaborative Cross (CC) mouse genetic reference population as a model to identify susceptibility alleles to SARS-CoV and SARS-CoV-2 infections. Our findings reveal that a multitrait loci found in chromosome 9 is an important regulator of sarbecovirus pathogenesis in mice. Within this locus, we identified and validated CCR9 and CXCR6 as important regulators of host disease outcomes. Specifically, both CCR9 and CXCR6 are protective against severe SARS-CoV, SARS-CoV-2, and SARS-related HKU3 virus disease in mice. This chromosome 9 multitrait locus may be important to help identify genes that regulate coronavirus disease outcomes in humans.


Assuntos
COVID-19 , Doenças Transmissíveis , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Viroses , Animais , Camundongos de Cruzamento Colaborativo , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , SARS-CoV-2/genética
17.
bioRxiv ; 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35677067

RESUMO

Infectious diseases have shaped the human population genetic structure, and genetic variation influences the susceptibility to many viral diseases. However, a variety of challenges have made the implementation of traditional human Genome-wide Association Studies (GWAS) approaches to study these infectious outcomes challenging. In contrast, mouse models of infectious diseases provide an experimental control and precision, which facilitates analyses and mechanistic studies of the role of genetic variation on infection. Here we use a genetic mapping cross between two distinct Collaborative Cross mouse strains with respect to SARS-CoV disease outcomes. We find several loci control differential disease outcome for a variety of traits in the context of SARS-CoV infection. Importantly, we identify a locus on mouse Chromosome 9 that shows conserved synteny with a human GWAS locus for SARS-CoV-2 severe disease. We follow-up and confirm a role for this locus, and identify two candidate genes, CCR9 and CXCR6 that both play a key role in regulating the severity of SARS-CoV, SARS-CoV-2 and a distantly related bat sarbecovirus disease outcomes. As such we provide a template for using experimental mouse crosses to identify and characterize multitrait loci that regulate pathogenic infectious outcomes across species.

18.
Sci Adv ; 8(13): eabm9718, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35363522

RESUMO

Cystic fibrosis (CF) is characterized by abnormal transepithelial ion transport. However, a description of CF lung disease pathophysiology unifying superficial epithelial and submucosal gland (SMG) dysfunctions has remained elusive. We hypothesized that biophysical abnormalities associated with CF mucus hyperconcentration provide a unifying mechanism. Studies of the anion secretion-inhibited pig airway model of CF revealed elevated SMG mucus concentrations, osmotic pressures, and SMG mucus accumulation. Human airway studies revealed hyperconcentrated CF SMG mucus with raised osmotic pressures and cohesive forces predicted to limit SMG mucus secretion/release. Using proline-rich protein 4 (PRR4) as a biomarker of SMG secretion, CF sputum proteomics analyses revealed markedly lower PRR4 levels compared to healthy and bronchiectasis controls, consistent with a failure of CF SMGs to secrete mucus onto airway surfaces. Raised mucus osmotic/cohesive forces, reflecting mucus hyperconcentration, provide a unifying mechanism that describes disease-initiating mucus accumulation on airway surfaces and in SMGs of the CF lung.


Assuntos
Fibrose Cística , Animais , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Muco/metabolismo , Sistema Respiratório/metabolismo , Escarro/metabolismo , Suínos
19.
Nature ; 604(7904): 111-119, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35355018

RESUMO

Mapping the spatial distribution and molecular identity of constituent cells is essential for understanding tissue dynamics in health and disease. We lack a comprehensive map of human distal airways, including the terminal and respiratory bronchioles (TRBs), which are implicated in respiratory diseases1-4. Here, using spatial transcriptomics and single-cell profiling of microdissected distal airways, we identify molecularly distinct TRB cell types that have not-to our knowledge-been previously characterized. These include airway-associated LGR5+ fibroblasts and TRB-specific alveolar type-0 (AT0) cells and TRB secretory cells (TRB-SCs). Connectome maps and organoid-based co-cultures reveal that LGR5+ fibroblasts form a signalling hub in the airway niche. AT0 cells and TRB-SCs are conserved in primates and emerge dynamically during human lung development. Using a non-human primate model of lung injury, together with human organoids and tissue specimens, we show that alveolar type-2 cells in regenerating lungs transiently acquire an AT0 state from which they can differentiate into either alveolar type-1 cells or TRB-SCs. This differentiation programme is distinct from that identified in the mouse lung5-7. Our study also reveals mechanisms that drive the differentiation of the bipotent AT0 cell state into normal or pathological states. In sum, our findings revise human lung cell maps and lineage trajectories, and implicate an epithelial transitional state in primate lung regeneration and disease.


Assuntos
Linhagem da Célula , Pulmão , Células-Tronco , Células Epiteliais Alveolares , Animais , Diferenciação Celular , Conectoma , Fibroblastos , Perfilação da Expressão Gênica , Humanos , Pulmão/citologia , Pneumopatias , Camundongos , Organoides , Primatas , Regeneração , Análise de Célula Única , Células-Tronco/citologia
20.
bioRxiv ; 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35194605

RESUMO

COVID-19 survivors develop post-acute sequelae of SARS-CoV-2 (PASC), but the mechanistic basis of PASC-associated lung abnormalities suffers from a lack of longitudinal samples. Mouse-adapted SARS-CoV-2 MA10 produces an acute respiratory distress syndrome (ARDS) in mice similar to humans. To investigate PASC pathogenesis, studies of MA10-infected mice were extended from acute disease through clinical recovery. At 15-120 days post-virus clearance, histologic evaluation identified subpleural lesions containing collagen, proliferative fibroblasts, and chronic inflammation with tertiary lymphoid structures. Longitudinal spatial transcriptional profiling identified global reparative and fibrotic pathways dysregulated in diseased regions, similar to human COVID-19. Populations of alveolar intermediate cells, coupled with focal upregulation of pro-fibrotic markers, were identified in persistently diseased regions. Early intervention with antiviral EIDD-2801 reduced chronic disease, and early anti-fibrotic agent (nintedanib) intervention modified early disease severity. This murine model provides opportunities to identify pathways associated with persistent SARS-CoV-2 pulmonary disease and test countermeasures to ameliorate PASC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA