RESUMO
Lignans are widely distributed plant secondary metabolites that have received attention for their benefits to human health. Sesamin is a furofran lignan that is conventionally extracted from Sesamum seeds and shows anti-oxidant and anti-inflammatory activities in the human liver. Sesamin is biosynthesized by the Sesamum-specific enzyme CYP81Q1, and the natural sources of sesamin are annual plants that are at risk from climate change. In contrast, Forsythia species are widely distributed perennial woody plants that highly accumulate the precursor lignan pinoresinol. To sustainably supply sesamin, we developed a transformation method for Forsythia leaf explants and generated transgenic Forsythia plants that heterologously expressed the CYP81Q1 gene. High-performance liquid chromatography (HPLC) and LC-mass spectrometry analyses detected sesamin and its intermediate piperitol in the leaves of two independent transgenic lines of F. intermedia and F. koreana. We also detected the accumulation of sesamin and piperitol in their vegetatively propagated descendants, demonstrating the stable and efficient production of these lignans. These results indicate that CYP81Q1-transgenic Forsythia plants are promising prototypes to produce diverse lignans and provide an important strategy for the cost-effective and scalable production of lignans.
Assuntos
Forsythia , Lignanas , Sesamum , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Dioxóis/metabolismo , Forsythia/genética , Forsythia/metabolismo , Humanos , Lignanas/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Sesamum/metabolismoRESUMO
Neuropeptides play pivotal roles in various biological events in the nervous, neuroendocrine, and endocrine systems, and are correlated with both physiological functions and unique behavioral traits of animals. Elucidation of functional interaction between neuropeptides and receptors is a crucial step for the verification of their biological roles and evolutionary processes. However, most receptors for novel peptides remain to be identified. Here, we show the identification of multiple G protein-coupled receptors (GPCRs) for species-specific neuropeptides of the vertebrate sister group, Ciona intestinalis Type A, by combining machine learning and experimental validation. We developed an original peptide descriptor-incorporated support vector machine and used it to predict 22 neuropeptide-GPCR pairs. Of note, signaling assays of the predicted pairs identified 1 homologous and 11 Ciona-specific neuropeptide-GPCR pairs for a 41% hit rate: the respective GPCRs for Ci-GALP, Ci-NTLP-2, Ci-LF-1, Ci-LF-2, Ci-LF-5, Ci-LF-6, Ci-LF-7, Ci-LF-8, Ci-YFV-1, and Ci-YFV-3. Interestingly, molecular phylogenetic tree analysis revealed that these receptors, excluding the Ci-GALP receptor, were evolutionarily unrelated to any other known peptide GPCRs, confirming that these GPCRs constitute unprecedented neuropeptide receptor clusters. Altogether, these results verified the neuropeptide-GPCR pairs in the protochordate and evolutionary lineages of neuropeptide GPCRs, and pave the way for investigating the endogenous roles of novel neuropeptides in the closest relatives of vertebrates and the evolutionary processes of neuropeptidergic systems throughout chordates. In addition, the present study also indicates the versatility of the machine-learning-assisted strategy for the identification of novel peptide-receptor pairs in various organisms.
Assuntos
Ciona intestinalis , Neuropeptídeos , Receptores Acoplados a Proteínas G , Receptores de Neuropeptídeos , Animais , Ciona intestinalis/química , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Biologia Computacional , Neuropeptídeos/química , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/química , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Máquina de Vetores de SuporteRESUMO
G protein-coupled receptors (GPCRs) have been found to form heterodimers and modulate or fine-tune the functions of GPCRs. However, the involvement of GPCR heterodimerization and its functional consequences in gonadal tissues, including granulosa cells, have been poorly investigated, mainly due to the lack of efficient method for identification of novel GPCR heterodimers. In this paper, we identified a novel GPCR heterodimer between prostaglandin E2 (PGE2) receptor 2 (EP2) and calcitonin (CT) receptor (CTR). High-resolution liquid chromatography (LC)-tandem mass spectrometry (MS/MS) of protease-digested EP2-coimmunoprecipitates detected protein fragments of CTR in an ovarian granulosa cell line, OV3121. Western blotting of EP2- and CTR-coimmunoprecipitates detected a specific band for EP2-CTR heterodimer. Specific heterodimerization between EP2 and CTR was also observed by fluorescence resonance energy transfer analysis in HEK293MSR cells expressing cyan- and yellow-fluorescent protein-fused EP2 and CTR, respectively. Collectively, these results provided evidence for heterodimerization between EP2 and CTR. Moreover, Ca2+ mobilization by CT was approximately 40% less potent in HEK293MSR cells expressing an EP2-CTR heterodimer, whereas cAMP production by EP2 or CT was not significantly altered compared with cells expressing EP2- or CTR alone. These functional analyses verified that CTR-mediated Ca2+ mobilization is specifically decreased via heterodimerization with EP2. Altogether, the present study suggests that a novel GPCR heterodimer, EP2-CTR, is involved in some functional regulation, and paves the way for investigation of novel biological roles of CTR and EP2 in various tissues.