Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 45(5): e26654, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520361

RESUMO

Obesity represents a significant public health concern and is linked to various comorbidities and cognitive impairments. Previous research indicates that elevated body mass index (BMI) is associated with structural changes in white matter (WM). However, a deeper characterization of body composition is required, especially considering the links between abdominal obesity and metabolic dysfunction. This study aims to enhance our understanding of the relationship between obesity and WM connectivity by directly assessing the amount and distribution of fat tissue. Whole-body magnetic resonance imaging (MRI) was employed to evaluate total adipose tissue (TAT), visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT), while MR liver spectroscopy measured liver fat content in 63 normal-weight, overweight, and obese males. WM connectivity was quantified using microstructure-informed tractography. Connectome-based predictive modeling was used to predict body composition metrics based on WM connectomes. Our analysis revealed a positive dependency between BMI, TAT, SAT, and WM connectivity in brain regions involved in reward processing and appetite regulation, such as the insula, nucleus accumbens, and orbitofrontal cortex. Increased connectivity was also observed in cognitive control and inhibition networks, including the middle frontal gyrus and anterior cingulate cortex. No significant associations were found between WM connectivity and VAT or liver fat. Our findings suggest that altered neural communication between these brain regions may affect cognitive processes, emotional regulation, and reward perception in individuals with obesity, potentially contributing to weight gain. While our study did not identify a link between WM connectivity and VAT or liver fat, further investigation of the role of various fat depots and metabolic factors in brain networks is required to advance obesity prevention and treatment approaches.


Assuntos
Imageamento por Ressonância Magnética , Substância Branca , Masculino , Humanos , Substância Branca/patologia , Distribuição Tecidual , Imagem Corporal Total , Obesidade/diagnóstico por imagem , Obesidade/complicações , Tecido Adiposo/diagnóstico por imagem , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia
2.
NPJ Parkinsons Dis ; 9(1): 2, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36611027

RESUMO

Pathologically increased beta power has been described as a biomarker for Parkinson's disease (PD) and related to prolonged bursts of subthalamic beta synchronization. Here, we investigate the association between subthalamic beta dynamics and motor impairment in a cohort of 106 Parkinson's patients in the ON- and OFF-medication state, using two different methods of beta burst determination. We report a frequency-specific correlation of low beta power and burst duration with motor impairment OFF dopaminergic medication. Furthermore, reduction of power and burst duration correlated significantly with symptom alleviation through dopaminergic medication. Importantly, qualitatively similar results were yielded with two different methods of beta burst definition. Our findings validate the robustness of previous results on pathological changes in subcortical oscillations both in the frequency- as well as in the time-domain in the largest cohort of PD patients to date with important implications for next-generation adaptive deep brain stimulation control algorithms.

3.
Obes Rev ; 23(3): e13388, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34908217

RESUMO

Obesity is a major global health problem leading to serious complications. It has been consistently associated with alterations in brain structure. Diffusion tensor imaging is used to examine brain white matter microstructure by assessing the dynamics of water diffusion in white matter tracts. Fractional anisotropy and mean diffusivity are two parameters measuring the directionality and rate of diffusion, respectively. Changes in these indices associated with obesity have been previously reported in numerous fiber tracts. This systematic review investigates microstructural white matter alterations in obesity using diffusion tensor imaging. A computerized search was performed in PubMed, Web of Science, and Livivo databases. Based on the inclusion/exclusion criteria, 31 cross-sectional studies comparing individuals with obesity and lean controls were identified. The studies included mixed-gender samples of children, young, middle-aged, and older adults. The majority of included studies reported decreased fractional anisotropy and increased mean diffusivity associated with elevated body mass index, suggesting white matter abnormalities. Nevertheless, a pattern of alterations is inconsistent across studies. This could be explained by several potential biases assessed by the National Institute of Health quality assessment tool. Furthermore, a direct assessment of body fat is recommended for a more accurate characterization of the brain-body relationship.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Idoso , Anisotropia , Encéfalo/diagnóstico por imagem , Criança , Estudos Transversais , Imagem de Tensor de Difusão/métodos , Humanos , Pessoa de Meia-Idade , Obesidade/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA