Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Methods Mol Biol ; 2763: 71-78, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347401

RESUMO

In the intestine, mucus covering the mucosa plays a critical role in maintaining gut homeostasis by protecting the mucosa from invasion by commensal bacteria. The gut mucus is composed primarily of MUC2 mucin secreted by goblet cells. MUC2 is highly O-glycosylated, and O-glycans are necessary for the function and polymer structure of MUC2. In addition, recent evidence revealed that several glycan modifications, such as sialylation and sulfation, confer resistance of mucins to proteolysis and affect the viscosity and lubricity of mucus. Therefore, characterizing glycan structures of mucins is required to understand their functions fully. In this chapter, we describe how to purify secreted mucins from the mammalian intestine for analysis of their glycan structures. This description includes the extraction of MUC2 mucin from the mucosal surface of the mouse colon and colon explants.


Assuntos
Mucosa Intestinal , Mucinas , Animais , Camundongos , Mucinas/química , Mucosa Intestinal/microbiologia , Mucina-2 , Células Caliciformes , Polissacarídeos , Mamíferos
2.
Methods Mol Biol ; 2763: 403-414, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347430

RESUMO

Mucus is part of the innate immune system that defends the mucosa against microbiota and other infectious threats. The mechanical characteristics of mucus, such as viscosity, elasticity, and lubricity, are critically involved in its barrier function. However, assessing the mechanical properties of mucus remains challenging because of technical limitations. Thus, a new approach that characterizes the mechanical properties of mucus on colonic tissues needs to be developed. Here, we describe a novel strategy to characterize the ex vivo mechanical properties of mucus on colonic tissues using atomic force microscopy. This description includes the preparation of the mouse colon sample, AFM calibration, and determining the elasticity (Young's modulus, E [kPa]) of the mucus layer in the colon.


Assuntos
Microscopia de Força Atômica , Animais , Camundongos , Elasticidade , Módulo de Elasticidade
3.
Genes Cells ; 28(11): 776-788, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37680073

RESUMO

In the intestine, interleukin (IL)-23 and IL-22 from immune cells in the lamina propria contribute to maintenance of the gut epithelial barrier through the induction of antimicrobial production and the promotion of epithelial cell proliferation. Several previous studies suggested that some of the functions of the IL-23/IL-22 axis on intestinal epithelial cells are shared between the small and large intestines. However, the similarities and differences of the IL-23/IL-22 axis on epithelial cells between these two anatomical sites remain unclear. Here, we comprehensively analyzed the gene expression of intestinal epithelial cells in the ileum and colon of germ-free, Il23-/- , and Il22-/- mice by RNA-sequencing. We found that while the IL-23/IL-22 axis is largely dependent on gut microbiota in the small intestine, it is much less dependent on it in the large intestine. In addition, the negative regulation of lipid metabolism in the epithelial cells by IL-23 and IL-22 in the small intestine was revealed, whereas the positive regulation of epithelial cell proliferation by IL-23 and IL-22 in the large intestine was highlighted. These findings shed light on the intestinal site-specific role of the IL-23/IL-22 axis in maintaining the physiological functions of intestinal epithelial cells.


Assuntos
Microbioma Gastrointestinal , Mucosa Intestinal , Animais , Camundongos , Expressão Gênica , Interleucina-23/genética , Interleucina-23/metabolismo , Mucosa Intestinal/metabolismo , Interleucina 22
4.
Mucosal Immunol ; 16(5): 624-641, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37385587

RESUMO

In the intestine, mucin 2 (Muc2) forms a network structure and prevents bacterial invasion. Glycans are indispensable for Muc2 barrier function. Among various glycosylation patterns of Muc2, sialylation inhibits bacteria-dependent Muc2 degradation. However, the mechanisms by which Muc2 creates the network structure and sialylation prevents mucin degradation remain unknown. Here, by focusing on two glycosyltransferases, St6 N-acetylgalactosaminide α-2,6-sialyltransferase 6 (St6galnac6) and ß-1,3-galactosyltransferase 5 (B3galt5), mediating the generation of desialylated glycans, we show that sialylation forms the network structure of Muc2 by providing negative charge and hydrophilicity. The colonic mucus of mice lacking St6galnac6 and B3galt5 was less sialylated, thinner, and more permeable to microbiota, resulting in high susceptibility to intestinal inflammation. Mice with a B3galt5 mutation associated with inflammatory bowel disease (IBD) also showed the loss of desialylated glycans of mucus and the high susceptibility to intestinal inflammation, suggesting that the reduced sialylation of Muc2 is associated with the pathogenesis of IBD. In mucins of mice with reduced sialylation, negative charge was reduced, the network structure was disturbed, and many bacteria invaded. Thus, sialylation mediates the negative charging of Muc2 and facilitates the formation of the mucin network structure, thereby inhibiting bacterial invasion in the colon to maintain gut homeostasis.

5.
Biochem Biophys Res Commun ; 669: 103-112, 2023 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-37269592

RESUMO

Tumor necrosis factor receptor-associated factor 6 (TRAF6) plays a pivotal role in the induction of inflammatory responses not only in innate immune cells but also in non-immune cells, leading to the activation of adaptive immunity. Signal transduction mediated by TRAF6, along with its upstream molecule MyD88 in intestinal epithelial cells (IECs) is crucial for the maintenance of mucosal homeostasis following inflammatory insult. The IEC-specific TRAF6-deficient (TRAF6ΔIEC) and MyD88-deficient (MyD88ΔIEC) mice exhibit increased susceptibility to DSS-induced colitis, emphasizing the critical role of this pathway. Moreover, MyD88 also plays a protective role in Citrobacter rodentium (C. rodentium) infection-induced colitis. However, its pathological role of TRAF6 in infectious colitis remains unclear. To investigate the site-specific roles of TRAF6 in response to enteric bacterial pathogens, we infected TRAF6ΔIEC and dendritic cell (DC)-specific TRAF6-deficient (TRAF6ΔDC) mice with C. rodentium and found that the pathology of infectious colitis was exacerbated with significantly decreased survival rates in TRAF6ΔDC mice, but not in TRAF6ΔIEC mice, compared to those in control mice. TRAF6ΔDC mice showed increased bacterial burdens, marked disruption of epithelial and mucosal structures with increased infiltration of neutrophils and macrophages, and elevated cytokine levels in the colon at the late stages of infection. The frequencies of IFN-γ producing Th1 cells and IL-17A producing Th17 cells in the colonic lamina propria were significantly reduced in TRAF6ΔDC mice. Finally, we demonstrated that TRAF6-deficient DCs failed to produce IL-12 and IL-23 in response to C. rodentium stimulation, and to induce both Th1 and Th17 cells in vitro. Thus, TRAF6 signaling in DCs, but not in IECs, protects against colitis induced by C. rodentium infection by producing IL-12 and IL-23 that induce Th1 and Th17 responses in the gut.


Assuntos
Citrobacter rodentium , Colite , Animais , Camundongos , Citrobacter rodentium/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Células Th17 , Colite/patologia , Transdução de Sinais , Mucosa Intestinal/metabolismo , Colo/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Dendríticas/metabolismo , Interleucina-12/metabolismo , Interleucina-23/metabolismo , Camundongos Endogâmicos C57BL , Células Th1/metabolismo
6.
Ann Rheum Dis ; 82(5): 621-629, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36627170

RESUMO

OBJECTIVES: Prevotella copri is considered to be a contributing factor in rheumatoid arthritis (RA). However, in some non-Westernised countries, healthy individuals also harbour an abundance of P. copri in the intestine. This study investigated the pathogenicity of RA patient-derived P. copri (P. copri RA) compared with healthy control-derived P. copri (P. copri HC). METHODS: We obtained 13 P. copri strains from the faeces of patients with RA and healthy controls. Following whole genome sequencing, the sequences of P. copri RA and P. copri HC were compared. To analyse the arthritis-inducing ability of P. copri, we examined two arthritis models (1) a collagen-induced arthritis model harbouring P. copri under specific-pathogen-free conditions and (2) an SKG mouse arthritis model under P. copri-monocolonised conditions. Finally, to evaluate the ability of P. copri to activate innate immune cells, we performed in vitro stimulation of bone marrow-derived dendritic cells (BMDCs) by P. copri RA and P. copri HC. RESULTS: Comparative genomic analysis revealed no apparent differences in the core gene contents between P. copri RA and P. copri HC, but pangenome analysis revealed the high genome plasticity of P. copri. We identified a P. copri RA-specific genomic region as a conjugative transposon. In both arthritis models, P. copri RA-induced more severe arthritis than P. copri HC. In vitro BMDC stimulation experiments revealed the upregulation of IL-17 and Th17-related cytokines (IL-6, IL-23) by P. copri RA. CONCLUSION: Our findings reveal the genetic diversity of P. copri, and the genomic signatures associated with strong arthritis-inducing ability of P. copri RA. Our study contributes towards elucidation of the complex pathogenesis of RA.


Assuntos
Artrite Reumatoide , Microbioma Gastrointestinal , Animais , Camundongos , Microbioma Gastrointestinal/genética , Artrite Reumatoide/genética , Prevotella/genética , Genômica , Modelos Animais de Doenças
7.
Cancer Immunol Immunother ; 72(1): 39-53, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35699757

RESUMO

Wilms' tumor 1 (WT1) is a promising tumor-associated antigen for cancer immunotherapy. We developed an oral protein vaccine platform composed of WT1-anchored, genetically engineered Bifidobacterium longum (B. longum) and conducted an in vivo study in mice to examine its anticancer activity. Mice were orally treated with phosphate-buffered saline, wild-type B. longum105-A, B. longum 2012 displaying only galacto-N-biose/lacto-N-biose I-binding protein (GLBP), and WT1 protein- and GLBP-expressing B. longum 420. Tumor size reduced significantly in the B. longum 420 group than in the B. longum 105-A and 2012 groups (P < 0.00 l each), indicating B. longum 420's antitumor activity via WT1-specific immune responses. CD8+ T cells played a major role in the antitumor activity of B. longum 420. The proportion of CD103+CD11b+CD11c+ dendritic cells (DCs) increased in the Peyer's patches (PPs) from mice in the B. longum 420 group, indicating the definite activation of DCs. In the PPs, the number and proportion of CD8+ T cells capable of producing interferon-gamma were significantly greater in the B. longum 420 group than in the B. longum 2012 group (P < 0.05 or < 0.01). The production of WT1-specific IgG antibody was significantly higher in the B. longum 420 group than in the 2012 group (P < 0.05). The B. longum 420 group showed the most intense intratumoral infiltration of CD4+ and CD8+ T cells primed by activated DCs in the PPs of mice in the B. longum 420 group. Our findings provide insights into a novel, intestinal bacterium-based, cancer immunotherapy through intestinal immunity.


Assuntos
Bifidobacterium longum , Vacinas Anticâncer , Leucemia Mieloide Aguda , Camundongos , Animais , Proteínas WT1 , Linfócitos T CD8-Positivos
8.
J Phys Chem Lett ; 13(40): 9494-9500, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36201238

RESUMO

Cell-coupled field-effect transistor (FET) biosensors have attracted considerable attention because of their high sensitivity to biomolecules. The use of insect cells (Sf21) as a core sensor element is advantageous due to their stable adhesion to sensors at room temperature. Although visualization of the insect cell-substrate interface leads to logical amplification of signals, the spatiotemporal processes at the interfaces have not yet been elucidated. We quantitatively monitored the adhesion dynamics of Sf21 using interference reflection microscopy (IRM). Specific adhesion signatures with ring-like patches along the cellular periphery were detected. A combination of zeta potential measurements and lectin staining identified specific glycoconjugates with low electrostatic potentials. The ring-like structures were disrupted after cholesterol depletion, suggesting a raft domain along the cell periphery. Our results indicate dynamic and asymmetric cell adhesion is due to low electrostatic repulsion with fluidic sugar rafts. We envision the logical design of cell-sensor interfaces with an electrical model that accounts for actual adhesion interfaces.


Assuntos
Colesterol , Lectinas , Animais , Adesão Celular , Glicoconjugados , Insetos , Açúcares , Temperatura
9.
Int Immunol ; 34(7): 343-352, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35303081

RESUMO

CX3CR1high myeloid cells in the small intestine mediate the induction of oral tolerance by driving regulatory T (Treg) cells. Bacterial metabolites, e.g. pyruvate and lactate, induce a dendrite extension of CX3CR1high myeloid cells into the intestinal lumen via GPR31. However, it remains unclear whether the pyruvate-GPR31 axis is involved in the induction of oral tolerance. Here, we show that pyruvate enhances oral tolerance in a GPR31-dependent manner. In ovalbumin (OVA)-fed Gpr31-deficient mice, an OVA-induced delayed-type hypersensitivity response was substantially induced, demonstrating the defective induction of oral tolerance in Gpr31-deficient mice. The percentage of RORγt+ Treg cells in the small intestine was reduced in Gpr31-deficient mice. In pyruvate-treated wild-type mice, a low dose of OVA efficiently induced oral tolerance. IL-10 production from intestinal CX3CR1high myeloid cells was increased by OVA ingestion in wild-type mice, but not in Gpr31-deficient mice. CX3CR1high myeloid cell-specific IL-10-deficient mice showed a defective induction of oral tolerance to OVA and a decreased accumulation of OVA-specific Treg cells in the small intestine. These findings demonstrate that pyruvate enhances oral tolerance through a GPR31-dependent effect on intestinal CX3CR1high myeloid cells.


Assuntos
Hipersensibilidade Tardia , Tolerância Imunológica , Ácido Pirúvico , Receptores Acoplados a Proteínas G , Administração Oral , Animais , Receptor 1 de Quimiocina CX3C , Hipersensibilidade Tardia/induzido quimicamente , Hipersensibilidade Tardia/prevenção & controle , Interleucina-10 , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina , Ácido Pirúvico/metabolismo , Receptores Acoplados a Proteínas G/genética , Linfócitos T Reguladores/metabolismo
10.
Genes Cells ; 27(4): 243-253, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35075728

RESUMO

MicroRNAs are a class of non-coding short-chained RNAs that control cellular functions by downregulating their target genes. Recent research indicates that microRNAs play a role in the maintenance of gut homeostasis. miR-215 was found to be highly expressed in epithelial cells of the small intestine; however, the involvement of miR-215 in gut immunity remains unknown. Here, we show that miR-215 negatively regulates inflammation in the small intestine by inhibiting CXCL12 production. Mice lacking miR-215 showed high susceptibility to inflammation induced by indomethacin, accompanied by an increased number of Th17 cells in the lamina propria of the small intestine. Our findings provide a rationale for targeting miR-215 as a therapeutic intervention for inflammatory conditions in the small intestine.


Assuntos
Inflamação , Intestino Delgado , MicroRNAs , Células Th17 , Animais , Inflamação/genética , Intestino Delgado/imunologia , Camundongos , MicroRNAs/genética
11.
Dig Dis Sci ; 67(6): 2143-2157, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34041649

RESUMO

BACKGROUND: The intestinal environment plays important roles in mucosal barrier homeostasis and intestinal inflammation, as clarified in studies using experimental animals but not in humans. AIMS: We investigated whether environmental changes in the fecal stream cause phenotypic changes in the human mucosal barrier. METHODS: We obtained human ileal samples after fecal stream diversions in patients with rectal cancer or Crohn's disease. We investigated the bacterial load and diversity in the human defunctioned ileum, defined as the anal side of the ileum relative to the ileostomy. We also examined the epithelium and lamina propria cell phenotypes in the defunctioned ileum. RESULTS: After fecal stream diversion, bacterial loads decreased significantly in the defunctioned ileum. Based on the Chao1, Shannon, and observed species indices, the diversity of mucosa-associated microbiota was lower in the defunctioned ileum than in the functional ileum. Moreover, the healthy defunctioned ileum showed reductions in villous height, goblet cell numbers, and Ki-67+ cell numbers. Additionally, interferon-γ+, interleukin-17+, and immunoglobulin A+ cell abundance in the lamina propria decreased. After the intestinal environment was restored with an ileostomy closure, the impaired ileal homeostasis recovered. The defunctioned ileum samples from patients with Crohn's disease also showed reductions in interferon-γ+ and interleukin-17+ cell numbers. CONCLUSIONS: Fecal stream diversion reduced the abundance and diversity of intestinal bacteria. It also altered the intestinal mucosal barrier, similar to the alterations observed in germ-free animals. In patients with Crohn's disease, Th1 and Th17 cell numbers were attenuated, which suggests that the host-microbiome interaction is important in disease pathogenesis.


Assuntos
Doença de Crohn , Doença de Crohn/patologia , Humanos , Íleo/patologia , Interferon gama , Interleucina-17 , Mucosa Intestinal/patologia
12.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34548395

RESUMO

Extracellular adenosine triphosphate (ATP) released by mucosal immune cells and by microbiota in the intestinal lumen elicits diverse immune responses that mediate the intestinal homeostasis via P2 purinergic receptors, while overactivation of ATP signaling leads to mucosal immune system disruption, which leads to pathogenesis of intestinal inflammation. In the small intestine, hydrolysis of luminal ATP by ectonucleoside triphosphate diphosphohydrolase (E-NTPD)7 in epithelial cells is essential for control of the number of T helper 17 (Th17) cells. However, the molecular mechanism by which microbiota-derived ATP in the colon is regulated remains poorly understood. Here, we show that E-NTPD8 is highly expressed in large-intestinal epithelial cells and hydrolyzes microbiota-derived luminal ATP. Compared with wild-type mice, Entpd8-/- mice develop more severe dextran sodium sulfate-induced colitis, which can be ameliorated by either the depletion of neutrophils and monocytes by injecting with anti-Gr-1 antibody or the introduction of P2rx4 deficiency into hematopoietic cells. An increased level of luminal ATP in the colon of Entpd8-/- mice promotes glycolysis in neutrophils through P2x4 receptor-dependent Ca2+ influx, which is linked to prolonged survival and elevated reactive oxygen species production in these cells. Thus, E-NTPD8 limits intestinal inflammation by controlling metabolic alteration toward glycolysis via the P2X4 receptor in myeloid cells.


Assuntos
Adenosina Trifosfatases/fisiologia , Trifosfato de Adenosina/metabolismo , Colite/prevenção & controle , Glicólise , Células Mieloides/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Células Th17/imunologia , Animais , Células Cultivadas , Colite/etiologia , Colite/metabolismo , Colite/patologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/patologia , Receptores Purinérgicos P2X4/genética , Transdução de Sinais
13.
Genes Cells ; 26(10): 807-822, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34379860

RESUMO

Inflammatory bowel disease (IBD) is a chronic inflammatory disorder in the intestine, and the dysfunction of intestinal epithelial barrier (IEB) may trigger the onset of IBD. Secretory leukocyte protease inhibitor (SLPI) is a serine protease inhibitor that has been implicated in the tissue-protective effect in the skin and lung. We found that SLPI was induced in lipopolysaccharides-treated colon carcinoma cell line and in the colon of dextran sulfate sodium (DSS)-treated mice. SLPI-deficient mice were administered DSS to induce colitis and sustained severe inflammation compared with wild-type mice. The colonic mucosa of SLPI-deficient mice showed more severe inflammation with neutrophil infiltration and higher levels of proinflammatory cytokines compared with control mice. Moreover, neutrophil elastase (NE) activity in SLPI-deficient mice was increased and IEB function was severely impaired in the colon, accompanied with the increased number of apoptotic cells. Importantly, we demonstrated that DSS-induced colitis was ameliorated by administration of protease inhibitor SSR69071 and recombinant SLPI. These results suggest that the protease inhibitory activity of SLPI protects from colitis by preventing IEB dysfunction caused by excessive NE activity, which provides insight into the novel function of SLPI in the regulation of gut homeostasis and therapeutic approaches for IBD.


Assuntos
Colite , Inibidor Secretado de Peptidases Leucocitárias , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Mucosa Intestinal , Camundongos , Inibidor Secretado de Peptidases Leucocitárias/genética , Inibidores de Serina Proteinase
14.
Int Immunol ; 33(7): 359-372, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33822948

RESUMO

Dysfunction of the intestinal mucosal barrier causes inflammatory bowel diseases (IBDs). Indeed, mucosal barrier impairment in the gut of IBD patients results from decreased expression of barrier molecules. Ly6/Plaur domain containing 8 (Lypd8) segregates microbiota from the colonic epithelial layer. In this study, we found that Lypd8-/- mice, in which flagellated bacteria invaded the mucosal surface of the colon, developed spontaneous colitis when dysbiosis was induced by a high-fat diet (HFD). On the basis of this finding, we assessed whether the application of human LYPD8 (hLYPD8) protein exhibiting the glycan-dependent inhibition of bacterial motility is effective in a colitis model. Oral and anal treatments with hLYPD8 protein ameliorate dextran sulfate sodium-induced colitis and HFD-induced colitis in Lypd8-/- mice. These results indicate a therapeutic potential of hLYPD8 protein supplementation for IBD.


Assuntos
Colo/metabolismo , Proteínas Ligadas por GPI/metabolismo , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Animais , Colite/induzido quimicamente , Colite/metabolismo , Sulfato de Dextrana/farmacologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Disbiose/induzido quimicamente , Disbiose/metabolismo , Feminino , Microbioma Gastrointestinal/fisiologia , Humanos , Inflamação/induzido quimicamente , Doenças Inflamatórias Intestinais/induzido quimicamente , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
15.
Biochem Biophys Res Commun ; 534: 540-546, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33239174

RESUMO

Nanoparticles, i.e., particles with a diameter of ≤100 nm regardless of their composing material, are added to various foods as moisturizers, coloring agents, and preservatives. Silicon dioxide (SiO2, silica) nanoparticles in particular are widely used as food additives. However, the influence of SiO2 nanoparticle oral consumption on intestinal homeostasis remains unclear. The daily intake of 10-nm-sized SiO2 nanoparticles exacerbates dextran sulfate sodium (DSS)-induced colitis, whereas the daily intake of 30-nm-sized SiO2 nanoparticles has no influence on intestinal inflammation. The exacerbation of colitis induced by consuming 10-nm-sized SiO2 nanoparticles was abolished in mice deficient in apoptosis-associated speck-like protein containing a CARD (ASC). Our study indicates that the oral intake of small SiO2 nanoparticles poses a risk for worsening intestinal inflammation through activation of the ASC inflammasome.


Assuntos
Colite/patologia , Aditivos Alimentares/efeitos adversos , Inflamação/patologia , Nanopartículas/efeitos adversos , Dióxido de Silício/efeitos adversos , Administração Oral , Animais , Colite/induzido quimicamente , Sulfato de Dextrana , Aditivos Alimentares/administração & dosagem , Inflamassomos/análise , Inflamação/induzido quimicamente , Intestinos/patologia , Masculino , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Tamanho da Partícula , Dióxido de Silício/administração & dosagem
16.
Sci Transl Med ; 12(550)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611682

RESUMO

Graft-versus-host disease (GVHD) and infection are major obstacles to successful allogeneic hematopoietic stem cell transplantation (HSCT). Intestinal goblet cells form the mucus layers, which spatially segregate gut microbiota from host tissues. Although it is well known that goblet cell loss is one of the histologic features of GVHD, effects of their loss in pathophysiology of GVHD remain to be elucidated. In mouse models of allogeneic HSCT, goblet cells in the colon were significantly reduced, resulting in disruption of the inner mucus layer of the colon and increased bacterial translocation into colonic mucosa. Pretransplant administration of interleukin-25 (IL-25), a growth factor for goblet cells, protected goblet cells against GVHD, prevented bacterial translocation, reduced plasma concentrations of interferon-γ (IFN-γ) and IL-6, and ameliorated GVHD. The protective role of IL-25 was dependent on Lypd8, an antimicrobial molecule produced by enterocytes in the colon that suppresses motility of flagellated bacteria. In clinical colon biopsies, low numbers of goblet cells were significantly associated with severe intestinal GVHD, increased transplant-related mortality, and poor survival after HSCT. Goblet cell loss is associated with poor transplant outcome, and administration of IL-25 represents an adjunct therapeutic strategy for GVHD by protecting goblet cells.


Assuntos
Microbioma Gastrointestinal , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Animais , Células Caliciformes , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Mucosa Intestinal , Camundongos
17.
Cell Rep ; 31(10): 107755, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32521253

RESUMO

B cells produce high amounts of cytokines and immunoglobulins in response to lipopolysaccharide (LPS) stimulation. Calcium signaling cascades are critically involved in cytokine production of T cells, and the cytosolic calcium concentration is regulated by calcium-activated monovalent cation channels (CAMs). Calcium signaling is also implicated in B cell activation; however, its involvement in the cytokine production of LPS-stimulated B cells remains less well characterized. Here, we show that the transient receptor potential melastatin 5 channel (TRPM5), which is one of the CAMs, negatively modulates calcium signaling, thereby regulating LPS-induced proliferative and inflammatory responses by B cells. LPS-stimulated B cells of Trpm5-deficient mice exhibit an increased cytosolic calcium concentration, leading to enhanced proliferation and the production of the inflammatory cytokines interleukin-6 and CXCL10. Furthermore, Trpm5-deficient mice show an exacerbation of endotoxic shock with high mortality. Our findings demonstrate the importance of TRPM5-dependent regulatory mechanisms in LPS-induced calcium signaling of splenic B cells.


Assuntos
Linfócitos B/metabolismo , Cálcio/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Linfócitos B/efeitos dos fármacos , Células HEK293 , Humanos , Lipopolissacarídeos/farmacologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Transdução de Sinais
18.
Annu Rev Immunol ; 38: 23-48, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32340570

RESUMO

The gastrointestinal tract harbors numerous commensal bacteria, referred to as the microbiota, that benefit host health by digesting dietary components and eliminating pathogens. The intestinal microbiota maintains epithelial barrier integrity and shapes the mucosal immune system, balancing host defense and oral tolerance with microbial metabolites, components, and attachment to host cells. To avoid aberrant immune responses, epithelial cells segregate the intestinal microbiota from immune cells by constructing chemical and physical barriers, leading to the establishment of host-commensal mutualism. Furthermore, intestinal immune cells participate in the maintenance of a healthy microbiota community and reinforce epithelial barrier functions. Perturbations of the microbiota composition are commonly observed in patients with autoimmune diseases and chronic inflammatory disorders. An understanding of the intimate interactions between the intestinal microbiota, epithelial cells, and immune cells that are crucial for the maintenance of intestinal homeostasis might promote advances in diagnostic and therapeutic approaches for various diseases.


Assuntos
Microbioma Gastrointestinal/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Animais , Suscetibilidade a Doenças , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/metabolismo
19.
Mucosal Immunol ; 13(1): 75-85, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31659301

RESUMO

Mucosal barriers segregate commensal microbes from the intestinal epithelia to maintain gut homeostasis. Ly6/Plaur domain-containing 8 (Lypd8), a highly glycosylated glycosylphosphatidylinositol-anchored protein selectively expressed on colonic enterocytes, promotes this segregation by inhibiting bacterial invasion of the inner mucus layer and colonic epithelia. However, it remains unclear whether Lypd8 prevents infection with enteric bacterial pathogens. Here, we demonstrate that Lypd8 strongly contributes to early-phase defense against Citrobacter rodentium, which causes colitis by inducing attachment and effacement (A/E) lesions on colonic epithelia. Lypd8 inhibits C. rodentium attachment to intestinal epithelial cells by binding to intimin, thereby suppressing the interaction between intimin and translocated intimin receptor. Lypd8 deficiency leads to rapid C. rodentium colonization in the colon, resulting in severe colitis with Th17-cell and neutrophil expansion in the lamina propria. This study identifies a novel function for Lypd8 against A/E bacteria and highlights the role of enterocytes as crucial players in innate immunity for protection against enteric bacterial pathogens.


Assuntos
Citrobacter rodentium/fisiologia , Colo/patologia , Infecções por Enterobacteriaceae/metabolismo , Proteínas Ligadas por GPI/metabolismo , Mucosa Intestinal/fisiologia , Mucosa/imunologia , Células Th17/imunologia , Adesinas Bacterianas/metabolismo , Idoso , Animais , Aderência Bacteriana , Colite , Infecções por Enterobacteriaceae/imunologia , Proteínas Ligadas por GPI/genética , Humanos , Imunidade Inata , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucosa/microbiologia , Ativação de Neutrófilo
20.
NPJ Biofilms Microbiomes ; 5(1): 37, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31885873

RESUMO

The bacterial species living in the gut mediate many aspects of biological processes such as nutrition and activation of adaptive immunity. In addition, commensal fungi residing in the intestine also influence host health. Although the interaction of bacterium and fungus has been shown, its precise mechanism during colonization of the human intestine remains largely unknown. Here, we show interaction between bacterial and fungal species for utilization of dietary components driving their efficient growth in the intestine. Next generation sequencing of fecal samples from Japanese and Indian adults revealed differential patterns of bacterial and fungal composition. In particular, Indians, who consume more plant polysaccharides than Japanese, harbored increased numbers of Prevotella and Candida. Candida spp. showed strong growth responses to the plant polysaccharide arabinoxylan in vitro. Furthermore, the culture supernatants of Candida spp. grown with arabinoxylan promoted rapid proliferation of Prevotella copri. Arabinose was identified as a potential growth-inducing factor in the Candida culture supernatants. Candida spp. exhibited a growth response to xylose, but not to arabinose, whereas P. copri proliferated in response to both xylose and arabinose. Candida spp., but not P. copri, colonized the intestine of germ-free mice. However, P. copri successfully colonized mouse intestine already harboring Candida. These findings demonstrate a proof of concept that fungal members of gut microbiota can facilitate a colonization of the intestine by their bacterial counterparts, potentially mediated by a dietary metabolite.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Dieta/métodos , Fungos/crescimento & desenvolvimento , Fungos/metabolismo , Microbioma Gastrointestinal , Interações Microbianas , Animais , Bactérias/classificação , Fezes/microbiologia , Fungos/classificação , Humanos , Índia , Japão , Camundongos , Modelos Animais , Polissacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA