Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Life Sci ; 351: 122758, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38823504

RESUMO

Living organisms store their energy in different forms of fats including lipid droplets, triacylglycerols, and steryl esters. In mammals and some non-mammal species, the energy is stored in adipose tissue which is the innervated specialized connective tissue that incorporates a variety of cell types such as macrophages, fibroblasts, pericytes, endothelial cells, adipocytes, blood cells, and several kinds of immune cells. Adipose tissue is so complex that the scope of its function is not only limited to energy storage, it also encompasses to thermogenesis, mechanical support, and immune defense. Since defects and complications in adipose tissue are heavily related to certain chronic diseases such as obesity, cardiovascular diseases, type 2 diabetes, insulin resistance, and cholesterol metabolism defects, it is important to further study adipose tissue to enlighten further mechanisms behind those diseases to develop possible therapeutic approaches. Adipose organoids are accepted as very promising tools for studying fat tissue development and its underlying molecular mechanisms, due to their high recapitulation of the adipose tissue in vitro. These organoids can be either derived using stromal vascular fractions or pluripotent stem cells. Due to their great vascularization capacity and previously reported incontrovertible regulatory role in insulin sensitivity and blood glucose levels, adipose organoids hold great potential to become an excellent candidate for the source of stem cell therapy. In this review, adipose tissue types and their corresponding developmental stages and functions, the importance of adipose organoids, and the potential they hold will be discussed in detail.


Assuntos
Tecido Adiposo , Organoides , Humanos , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Organoides/metabolismo , Animais , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Adipócitos/metabolismo , Adipócitos/citologia
2.
Mol Biol Rep ; 51(1): 441, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520606

RESUMO

BACKGROUND: Identification of novel cell-based therapy sources has been of great interest in recent years to provide alternative and available therapy options in clinics. Conditioned medium (CM) can be a valuable supply for growth factors, cytokines and chemokines as a source of stem cell secretome. Exploring the role of new CM sources for tissue regeneration might be a promising approach for therapeutic purposes. METHODS AND RESULTS: In the current study, neuromesodermal progenitors (NMPs) derived from induced pluripotent stem cells (iPSCs) were used to collect CM. Fibroblast derived iPSCs were successfully differentiated into NMPs and NMPs were characterized by double positive T/Bra and Sox2 staining. CM was collected from NMPs, and the content was characterized by membrane analysis. In vitro wound healing assay was used as a model system to observe potential activity of CM on cell migration. Fibroblasts, keratinocytes and endothelial cells were used to evaluate the effect of NMP-derived CM (NMP-CM) on cell migration in vitro. Several important proteins related to wound healing such as ANGPT 1, ANGPT 2, MCP-1, PDGF-AA, SDF-1α, TIMP-1 and TIMP-2 were increased in NMP-CM. NMP-CM increased cell proliferation and migration in vitro. CONCLUSIONS: In vitro data obtained from three distinct cell types suggest a promising role of NMP-CM on cell migration. NMP-CM can be used for wound management in the further future after detailed in vitro and in vivo research.


Assuntos
Células-Tronco Pluripotentes Induzidas , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Endoteliais/metabolismo , Queratinócitos/metabolismo , Movimento Celular , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA