Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2317274121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38579010

RESUMO

Here, we describe the identification of an antibiotic class acting via LpxH, a clinically unexploited target in lipopolysaccharide synthesis. The lipopolysaccharide synthesis pathway is essential in most Gram-negative bacteria and there is no analogous pathway in humans. Based on a series of phenotypic screens, we identified a hit targeting this pathway that had activity on efflux-defective strains of Escherichia coli. We recognized common structural elements between this hit and a previously published inhibitor, also with activity against efflux-deficient bacteria. With the help of X-ray structures, this information was used to design inhibitors with activity on efflux-proficient, wild-type strains. Optimization of properties such as solubility, metabolic stability and serum protein binding resulted in compounds having potent in vivo efficacy against bloodstream infections caused by the critical Gram-negative pathogens E. coli and Klebsiella pneumoniae. Other favorable properties of the series include a lack of pre-existing resistance in clinical isolates, and no loss of activity against strains expressing extended-spectrum-ß-lactamase, metallo-ß-lactamase, or carbapenemase-resistance genes. Further development of this class of antibiotics could make an important contribution to the ongoing struggle against antibiotic resistance.


Assuntos
Antibacterianos , Lipopolissacarídeos , Humanos , Antibacterianos/química , Escherichia coli/metabolismo , Bactérias Gram-Negativas/metabolismo , beta-Lactamases/genética , Testes de Sensibilidade Microbiana
2.
Pharmaceutics ; 14(5)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35631684

RESUMO

Prostate-specific membrane antigen (PSMA) is overexpressed in the majority of prostate cancer cells and is considered to be an important target for the molecular imaging and therapy of prostate cancer. Herein, we present the design, synthesis, and evaluation of 11 PSMA-binding radioligands with modified linker structures, focusing on the relationship between molecular structure and targeting properties. The linker design was based on 2-naphthyl-L-alanine-tranexamic acid, the linker structure of PSMA-617. X-ray crystal-structure analysis of PSMA and structure-based design were used to generate the linker modifications, suggesting that substitution of tranexamic acid could lead to interactions with Phe546, Trp541, and Arg43 within the binding cavity. After synthesis through SPPS, analogues were labelled with indium-111 and evaluated in vitro for their specific binding, affinity, and cellular retention. Selected compounds were further evaluated in vivo in PSMA-expressing tumour-bearing mice. Based on the results, 2-naphthyl-L-alanine appears to be crucial for good targeting properties, whereas tranexamic acid could be replaced by other substituents. [111In]In-BQ7859, consisting of a 2-naphthyl-L-alanine-L-tyrosine linker, demonstrated favourable targeting properties. The substitution of tranexamic acid for L-tyrosine in the linker led to an improved tumour-to-blood ratio, highlighting [111In]In-BQ7859 as a promising PSMA-targeting radioligand.

3.
Bioorg Med Chem ; 49: 116399, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34601455

RESUMO

Macrocycles form an important compound class in medicinal chemistry due to their interesting structural and biological properties. To help design macrocycles, it is important to understand how the conformational preferences are affected upon macrocyclization of a lead compound. To address this, we collected a unique data set of protein-ligand complexes containing "non-macrocyclic" ("linear") ligands matched with macrocyclic analogs binding to the same protein in a similar pose. Out of the 39 co-crystallized ligands considered, 10 were linear and 29 were macrocyclic. To enable a more general analysis, 128 additional ligands from the publications associated with these protein data bank entries were added to the data set. Using in total 167 collected ligands, we investigated if the conformers in the macrocyclic conformational ensembles were more similar to the bioactive conformation in comparison to the conformers of their linear counterparts. Unexpectedly, in most cases the macrocycle conformational ensemble distributions were not very different from those of the linear compounds. Thus, care should be taken when designing macrocycles with the aim to focus their conformational preference towards the bioactive conformation. We also set out to investigate potential conformational flexibility differences between the two compound classes, computational energy window settings and evaluate a literature metric for approximating the conformational focusing on the bioactive conformation.


Assuntos
Compostos Macrocíclicos/química , Química Farmacêutica , Ciclização , Compostos Macrocíclicos/síntese química , Modelos Moleculares , Conformação Molecular
4.
J Comput Aided Mol Des ; 34(3): 231-252, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31965404

RESUMO

Macrocycles represent an important class of medicinally relevant small molecules due to their interesting biological properties. Therefore, a firm understanding of their conformational preferences is important for drug design. Given the importance of macrocycle-protein modelling in drug discovery, we envisaged that a systematic study of both classical and recent specialized methods would provide guidance for other practitioners within the field. In this study we compare the performance of the general, well established conformational analysis methods Monte Carlo Multiple Minimum (MCMM) and Mixed Torsional/Low-Mode sampling (MTLMOD) with two more recent and specialized macrocycle sampling techniques: MacroModel macrocycle Baseline Search (MD/LLMOD) and Prime macrocycle conformational sampling (PRIME-MCS). Using macrocycles extracted from 44 macrocycle-protein X-ray crystallography complexes, we evaluated each method based on their ability to (i) generate unique conformers, (ii) generate unique macrocycle ring conformations, (iii) identify the global energy minimum, (iv) identify conformers similar to the X-ray ligand conformation after Protein Preparation Wizard treatment (X-rayppw), and (v) to the X-rayppw ring conformation. Computational speed was also considered. In addition, conformational coverage, as defined by the number of conformations identified, was studied. In order to study the relative energies of the bioactive conformations, the energy differences between the global energy minima and the energy minimized X-rayppw structures and, the global energy minima and the MCMM-Exhaustive (1,000,000 search steps) generated conformers closest to the X-rayppw structure, were calculated and analysed. All searches were performed using relatively short run times (10,000 steps for MCMM, MTLMOD and MD/LLMOD). To assess the performance of the methods, they were compared to an exhaustive MCMM search using 1,000,000 search steps for each of the 44 macrocycles (requiring ca 200 times more CPU time). Prior to our analysis, we also investigated if the general search methods MCMM and MTLMOD could also be optimized for macrocycle conformational sampling. Taken together, our work concludes that the more general methods can be optimized for macrocycle modelling by slightly adjusting the settings around the ring closure bond. In most cases, MCMM and MTLMOD with either standard or enhanced settings performed well in comparison to the more specialized macrocycle sampling methods MD/LLMOD and PRIME-MCS. When using enhanced settings for MCMM and MTLMOD, the X-rayppw conformation was regenerated with the greatest accuracy. The, MD/LLMOD emerged as the most efficient method for generating the global energy minima.


Assuntos
Química Computacional , Descoberta de Drogas , Conformação Proteica , Proteínas/química , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Ligantes , Simulação de Dinâmica Molecular , Termodinâmica
5.
Eur J Med Chem ; 157: 1346-1360, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30196059

RESUMO

Type I signal peptidase, with its vital role in bacterial viability, is a promising but underexploited antibacterial drug target. In the light of steadily increasing rates of antimicrobial resistance, we have developed novel macrocyclic lipopeptides, linking P2 and P1' by a boronic ester warhead, capable of inhibiting Escherichia coli type I signal peptidase (EcLepB) and exhibiting good antibacterial activity. Structural modifications of the macrocyclic ring, the peptide sequence and the lipophilic tail led us to 14 novel macrocyclic boronic esters. It could be shown that macrocyclization is well tolerated in terms of EcLepB inhibition and antibacterial activity. Among the synthesized macrocycles, potent enzyme inhibitors in the low nanomolar range (e.g. compound 42f, EcLepB IC50 = 29 nM) were identified also showing good antimicrobial activity (e.g. compound 42b, E. coli WT MIC = 16 µg/mL). The unique macrocyclic boronic esters described here were based on previously published linear lipopeptidic EcLepB inhibitors in an attempt to address cytotoxicity and hemolysis. We show herein that structural changes to the macrocyclic ring influence both the cytotoxicity and hemolytic activity suggesting that the P2 to P1' linker provide means for optimizing off-target effects. However, for the present set of compounds we were not able to separate the antibacterial activity and cytotoxic effect.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Proteínas de Membrana/antagonistas & inibidores , Inibidores de Serina Proteinase/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Ácidos Borônicos/química , Ácidos Borônicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Ésteres/química , Ésteres/farmacologia , Células Hep G2 , Humanos , Lipopeptídeos/química , Lipopeptídeos/farmacologia , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Proteínas de Membrana/metabolismo , Estrutura Molecular , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/química , Relação Estrutura-Atividade
6.
J Chem Inf Model ; 57(2): 190-202, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28079375

RESUMO

In recent years, there has been an increased interest in using macrocyclic compounds for drug discovery and development. For docking of these commonly large and flexible compounds to be addressed, a screening and a validation set were assembled from the PDB consisting of 16 and 31 macrocycle-containing protein complexes, respectively. The macrocycles were docked in Glide by rigid docking of pregenerated conformational ensembles produced by the macrocycle conformational sampling method (MCS) in Schrödinger Release 2015-3 or by direct Glide flexible docking after performing ring-templating. The two protocols were compared to rigid docking of pregenerated conformational ensembles produced by an exhaustive Monte Carlo multiple minimum (MCMM) conformational search and a shorter MCMM conformational search (MCMM-short). The docking accuracy was evaluated and expressed as the RMSD between the heavy atoms of the ligand as found in the X-ray structure after refinement and the poses obtained by the docking protocols. The median RMSD values for top-scored poses of the screening set were 0.83, 0.80, 0.88, and 0.58 Å for MCMM, MCMM-short, MCS, and Glide flexible docking, respectively. There was no statistically significant difference in the performance between rigid docking of pregenerated conformations produced by the MCS and direct docking using Glide flexible docking. However, the flexible docking protocol was 2-times faster in docking the screening set compared to that of the MCS protocol. In a final study, the new Prime-MCS method was evaluated in Schrödinger Release 2016-3. This method is faster compared that of to MCS; however, the conformations generated were found to be suboptimal for rigid docking. Therefore, on the basis of timing, accuracy, and ease of set up, standard Glide flexible docking with prior ring-templating is recommended over current gold standard protocols using rigid docking of pregenerated conformational ensembles.


Assuntos
Compostos Macrocíclicos/química , Compostos Macrocíclicos/metabolismo , Simulação de Acoplamento Molecular , Descoberta de Drogas , Ligantes , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA