Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Pharmaceutics ; 14(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35631556

RESUMO

The T cell-dependent bispecific (TDB) antibody, anti-CD79b/CD3, targets CD79b and CD3 cell-surface receptors expressed on B cells and T cells, respectively. Since the anti-CD79b arm of this TDB binds only to human CD79b, a surrogate TDB that binds to cynomolgus monkey CD79b (cyCD79b) was used for preclinical characterization. To evaluate the impact of CD3 binding affinity on the TDB pharmacokinetics (PK), we utilized non-tumor-targeting bispecific anti-gD/CD3 antibodies composed of a low/high CD3 affinity arm along with a monospecific anti-gD arm as controls in monkeys and mice. An integrated PKPD model was developed to characterize PK and pharmacodynamics (PD). This study revealed the impact of CD3 binding affinity on anti-cyCD79b/CD3 PK. The surrogate anti-cyCD79b/CD3 TDB was highly effective in killing CD79b-expressing B cells and exhibited nonlinear PK in monkeys, consistent with target-mediated clearance. A dose-dependent decrease in B cell counts in peripheral blood was observed, as expected. Modeling indicated that anti-cyCD79b/CD3 TDB's rapid and target-mediated clearance may be attributed to faster internalization of CD79b, in addition to enhanced CD3 binding. The model yielded unbiased and precise curve fits. These findings highlight the complex interaction between TDBs and their targets and may be applicable to the development of other biotherapeutics.

2.
Clin Pharmacol Ther ; 111(4): 826-834, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35064573

RESUMO

Delivery of biologics via cerebrospinal fluid (CSF) has demonstrated potential to access the tissues of the central nervous system (CNS) by circumventing the blood-brain barrier and blood-CSF barrier. Developing an effective CSF drug delivery strategy requires optimization of multiple parameters, including choice of CSF access point, delivery device technology, and delivery kinetics to achieve effective therapeutic concentrations in the target brain region, whereas also considering the biologic modality, mechanism of action, disease indication, and patient population. This review discusses key preclinical and clinical examples of CSF delivery for different biologic modalities (antibodies, nucleic acid-based therapeutics, and gene therapy) to the brain via CSF or CNS access routes (intracerebroventricular, intrathecal-cisterna magna, intrathecal-lumbar, intraparenchymal, and intranasal), including the use of novel device technologies. This review also discusses quantitative models of CSF flow that provide insight into the effect of fluid dynamics in CSF on drug delivery and CNS distribution. Such models can facilitate delivery device design and pharmacokinetic/pharmacodynamic translation from preclinical species to humans in order to optimize CSF drug delivery to brain regions of interest.


Assuntos
Produtos Biológicos , Encéfalo , Transporte Biológico/fisiologia , Barreira Hematoencefálica , Sistema Nervoso Central , Humanos
3.
AAPS J ; 20(6): 107, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30298434

RESUMO

We previously performed a comparative assessment of tissue-level vascular physiological parameters in mice and rats, two of the most commonly utilized species in translational drug development. The present work extends this effort to non-human primates by measuring tissue- and organ-level vascular volumes (Vv), interstitial volumes (Vi), and blood flow rates (Q) in cynomolgus monkeys. These measurements were accomplished by red blood cell labeling, extracellular marker infusion, and rubidium chloride bolus distribution, respectively, the same methods used in previous rodent measurements. In addition, whole-body blood volumes (BV) were determined across species. The results demonstrate that Vv, Vi, and Q, measured using our methods scale approximately by body weight across mouse, rat, and monkey in the tissues considered here, where allometric analysis allowed extrapolation to human parameters. Significant differences were observed between the values determined in this study and those reported in the literature, including Vv in muscle, brain, and skin and Q in muscle, adipose, heart, thymus, and spleen. The impact of these differences for selected tissues was evaluated via sensitivity analysis using a physiologically based pharmacokinetic model. The blood-brain barrier in monkeys was shown to be more impervious to an infused radioactive tracer, indium-111-pentetate, than in mice or rats. The body weight-normalized total BV measured in monkey agreed well with previously measured value in rats but was lower than that in mice. These findings have important implications for the common practice of scaling physiological parameters from rodents to primates in translational pharmacology.


Assuntos
Desenvolvimento de Medicamentos/métodos , Modelos Animais , Pesquisa Farmacêutica/métodos , Animais , Velocidade do Fluxo Sanguíneo/fisiologia , Volume Sanguíneo/fisiologia , Barreira Hematoencefálica/metabolismo , Peso Corporal/fisiologia , Feminino , Macaca fascicularis/fisiologia , Masculino , Camundongos/fisiologia , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/farmacocinética , Ratos/fisiologia , Especificidade da Espécie , Distribuição Tecidual
4.
Clin Transl Sci ; 11(3): 296-304, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29351372

RESUMO

CD20 is a cell-surface receptor expressed by healthy and neoplastic B cells and is a well-established target for biologics used to treat B-cell malignancies. Pharmacokinetic (PK) and pharmacodynamic (PD) data for the anti-CD20/CD3 T-cell-dependent bispecific antibody BTCT4465A were collected in transgenic mouse and nonhuman primate (NHP) studies. Pronounced nonlinearity in drug elimination was observed in the murine studies, and time-varying, nonlinear PK was observed in NHPs, where three empirical drug elimination terms were identified using a mixed-effects modeling approach: i) a constant nonsaturable linear clearance term (7 mL/day/kg); ii) a rapidly decaying time-varying, linear clearance term (t½  = 1.6 h); and iii) a slowly decaying time-varying, nonlinear clearance term (t½  = 4.8 days). The two time-varying drug elimination terms approximately track with time scales of B-cell depletion and T-cell migration/expansion within the central blood compartment. The mixed-effects NHP model was scaled to human and prospective clinical simulations were generated.


Assuntos
Anticorpos Biespecíficos/farmacologia , Linfócitos T/imunologia , Animais , Antígenos CD20/imunologia , Complexo CD3/antagonistas & inibidores , Complexo CD3/imunologia , Movimento Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Macaca fascicularis , Masculino , Camundongos , Camundongos Transgênicos , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
5.
Exp Eye Res ; 85(4): 425-30, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17714704

RESUMO

Neovascular age-related macular degeneration (AMD) is the leading cause of blindness in older adults in the Western world. Ranibizumab (Lucentis), a humanized antibody fragment directed against vascular endothelial growth factor (VEGF-A), was recently approved by the US Food and Drug Administration (FDA) for the treatment of neovascular AMD. The objective of this study was to characterize the binding affinity and pharmacological activity of ranibizumab for 3 biologically active forms of VEGF-A: VEGF165, VEGF121, and VEGF110. The apparent equilibrium binding affinity of ranibizumab for VEGF-A molecules was determined by Biacore analysis; the biological activity of VEGF-A was demonstrated in a human umbilical vein endothelial cell (HUVEC) proliferation-inhibition assay. Inhibition of VEGF-A-induced vascular permeability by ranibizumab was assessed in vivo using hairless guinea pigs and a modified Miles assay. Ranibizumab was capable of binding to recombinant human VEGF165, VEGF121, and VEGF110 (KD < or = 192 pM), inhibiting VEGF-A-induced HUVEC proliferation in a concentration-dependent manner. Ranibizumab also exerted potent dose-dependent inhibition (IC(50) of 0.4-1.2 nM) of the vascular permeability-enhancing activity of VEGF165, VEGF121, and VEGF110 in the Miles assay. In conclusion, these results show that ranibizumab is capable of binding to and specifically inhibiting the activities of 3 biologically active forms of VEGF-A. As VEGF-A plays a pivotal role in the pathogenesis of neovascular AMD, ranibizumab activity, as demonstrated in this study, supports its clinical utility in the treatment of this disease.


Assuntos
Inibidores da Angiogênese/farmacologia , Anticorpos Monoclonais/farmacologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Inibidores da Angiogênese/metabolismo , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais Humanizados , Permeabilidade Capilar/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Cobaias , Humanos , Ranibizumab , Proteínas Recombinantes/metabolismo , Pele/irrigação sanguínea , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA