Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Am Coll Cardiol ; 78(14): 1437-1449, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34593126

RESUMO

BACKGROUND: Monoclonal antibodies against proprotein convertase subtilisin/kexin type 9 (PCSK9i) lower LDL-C by up to 60% and increase plasma proprotein convertase subtilisin/kexin type 9 (PCSK9) levels by 10-fold. OBJECTIVES: The authors studied the reasons behind the robust increase in plasma PCSK9 levels by testing the hypothesis that mechanisms beyond clearance via the low-density lipoprotein receptor (LDLR) contribute to the regulation of cholesterol homeostasis. METHODS: In clinical cohorts, animal models, and cell-based studies, we measured kinetic changes in PCSK9 production and clearance in response to PCSK9i. RESULTS: In a patient cohort receiving PCSK9i therapy, plasma PCSK9 levels rose 11-fold during the first 3 months and then plateaued for 15 months. In a cohort of healthy volunteers, a single injection of PCSK9i increased plasma PCSK9 levels within 12 hours; the rise continued for 9 days until it plateaued at 10-fold above baseline. We recapitulated the rapid rise in PCSK9 levels in a mouse model, but only in the presence of LDLR. In vivo turnover and in vitro pulse-chase studies identified 2 mechanisms contributing to the rapid increase in plasma PCSK9 levels in response to PCSK9i: 1) the expected delayed clearance of the antibody-bound PCSK9; and 2) the unexpected post-translational increase in PCSK9 secretion. CONCLUSIONS: PCSK9 re-entry to the liver via LDLR triggers a sensing loop regulating PCSK9 secretion. PCSK9i therapy enhances the secretion of PCSK9, an effect that contributes to the increased plasma PCSK9 levels in treated subjects.


Assuntos
Anticorpos Monoclonais/farmacologia , Fígado/metabolismo , Inibidores de PCSK9/farmacologia , Pró-Proteína Convertase 9/sangue , Adulto , Idoso , Animais , Anticorpos Monoclonais/uso terapêutico , Feminino , Células HEK293 , Voluntários Saudáveis , Humanos , Hipercolesterolemia/tratamento farmacológico , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Camundongos Knockout , Pessoa de Meia-Idade , Inibidores de PCSK9/uso terapêutico , Receptores de LDL/sangue , Estudos Retrospectivos
2.
J Lipid Res ; 62: 100003, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33429337

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates cholesterol metabolism by inducing the degradation of hepatic low density lipoprotein receptors (LDLRs). Plasma PCSK9 has 2 main molecular forms: a 62 kDa mature form (PCSK9_62) and a 55 kDa, furin-cleaved form (PCSK9_55). PCSK9_55 is considered less active than PCSK9_62 in degrading LDLRs. We aimed to identify the site of PCSK9_55 formation (intracellular vs. extracellular) and to further characterize the LDLR-degradative function of PCSK9_55 relative to PCSK9_62. Coexpressing PCSK9_62 with furin in cell culture induced formation of PCSK9_55, most of which was found in the extracellular space. Under the same conditions, we found that i) adding a cell-permeable furin inhibitor preferentially decreased the formation of PCSK9_55 extracellularly; ii) using pulse-chase analysis, we observed the formation of PCSK9_55 exclusively extracellularly in a time-dependent manner. A recombinant form of PCSK9_55 was efficiently produced but displayed impaired secretion that resulted in its intracellular trapping. However, the nonsecreted PCSK9_55 was able to induce degradation of LDLR, though with 50% lower efficiency than PCSK9_62. Collectively, our data show that 1) PCSK9_55 is formed extracellularly; 2) PCSK9_55 has a shorter half-life; 3) there is a small intracellular pool of PCSK9_55 that is not secreted; and 4) PCSK9_55 retained within the cell maintains a reduced efficiency to cause LDLR degradation.


Assuntos
Pró-Proteína Convertase 9
3.
Sci Rep ; 11(1): 430, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33432099

RESUMO

Plasminogen activator inhibitor 1 (PAI-1) is a functional biomarker of the metabolic syndrome. Previous studies have demonstrated that PAI-1 is a mechanistic contributor to several elements of the syndrome, including obesity, hypertension and insulin resistance. Here we show that PAI-1 is also a critical regulator of hepatic lipid metabolism. RNA sequencing revealed that PAI-1 directly regulates the transcriptional expression of numerous genes involved in mammalian lipid homeostasis, including PCSK9 and FGF21. Pharmacologic or genetic reductions in plasma PAI-1 activity ameliorates hyperlipidemia in vivo. These experimental findings are complemented with the observation that genetic deficiency of PAI-1 is associated with reduced plasma PCSK9 levels in humans. Taken together, our findings identify PAI-1 as a novel contributor to mammalian lipid metabolism and provides a fundamental mechanistic insight into the pathogenesis of one of the most pervasive medical problems worldwide.


Assuntos
Dislipidemias/genética , Fígado Gorduroso/genética , Inibidor 1 de Ativador de Plasminogênio/fisiologia , Animais , Células Cultivadas , Estudos de Coortes , Dislipidemias/metabolismo , Fígado Gorduroso/metabolismo , Feminino , Fatores de Crescimento de Fibroblastos/genética , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pró-Proteína Convertase 9/genética
4.
Biotechnol Prog ; 37(1): e3069, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829524

RESUMO

Human in vitro hepatic models generate faster drug toxicity data with higher human predictability compared to animal models. However, for long-term studies, current models require the use of serum and 3D architecture, limiting their utility. Maintaining a functional long-term human in vitro hepatic culture that avoids complex structures and serum would improve the value of such systems for preclinical studies. This would also enable a more straightforward integration with current multi-organ devices to study human systemic toxicity to generate an alternative model to chronic animal evaluations. A human primary hepatocyte culture system was characterized for 28 days in 2D and serum-free defined conditions. Under the studied conditions, human primary hepatocytes maintained their characteristic morphology, hepatic markers and functions for 28 days. The acute and chronic administration of known drugs validated the sensitivity of the system for drug testing. This human 2D model represents a realistic system to evaluate hepatic function for long-term drug studies, without the need of animal serum, confounding variable in most models, and with less complexity and resultant cost compared to most 3D models. The defined culture conditions can easily be integrated into complex multi-organ in vitro models for studying systemic effects driven by the liver function for long-term evaluations.


Assuntos
Antineoplásicos/farmacologia , Meios de Cultura Livres de Soro/farmacologia , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP3A/metabolismo , Hepatócitos/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Hepatócitos/enzimologia , Humanos , Técnicas In Vitro
5.
Lab Chip ; 20(4): 749-759, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31970354

RESUMO

Body-on-a-chip in vitro systems are a promising technology that aims to increase the predictive power of drug efficacy and toxicity in humans when compared to traditional animal models. Here, we developed a new heart-liver body-on-a-chip system with a skin surrogate to assess the toxicity of drugs that are topically administered. In order to test the utility of the system, diclofenac, ketoconazole, hydrocortisone and acetaminophen were applied topically through a synthetic skin surrogate (Strat-M membrane) and the toxicity results were compared to those of acute drug exposure from systemically applying the compounds. The heart-liver system was successful in predicting the effects for both cardiac and liver functions changes due to the compounds. The difference in the concentrations of drugs applied topically compared to systemically indicates that the barrier properties of the skin surrogate were efficient. One important advantage of this heart-liver system was the capability of showing differential effects of acute and chronic drug exposure which is necessary as part of the International Conference in Harmonisation (ICH) tri-partate guidelines. In conclusion, this work indicates a promising heart-liver body-on-a-chip system that can be used for the assessment of potential drug toxicity from dermal absorption as well as evaluate transport dynamics through the skin in the same system.


Assuntos
Dispositivos Lab-On-A-Chip , Preparações Farmacêuticas , Animais , Humanos , Fígado/metabolismo , Preparações Farmacêuticas/metabolismo , Pele/metabolismo , Absorção Cutânea
6.
Am J Prev Cardiol ; 1: 100012, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34327453

RESUMO

OBJECTIVE: To characterize unusual responses to PCSK9 inhibitor (PCSK9i) therapy in a real-world setting, given their extremely low prevalence in clinical trials. METHODS: A retrospective study of patients seen in a structured academic PCSK9i clinic who had LDL-C measurements before and after initiation of PCSK9i (up to 12 months). Unusual response was defined as: (1) no response: no changes in LDL-C level at all time points; (2) delayed response: <30% LDL-C reduction by the third dose, but achieving this threshold at a later time; (3) reduced response: <30% LDL-C reduction at all time points; and (4) lost response: ≥30% LDL-C reduction by the third dose, but displaying <30% reduction at a later time. RESULTS: Of the 411 patients meeting inclusion criteria, 54 were initially classified as unusual responders. After excluding those not adherent to prescribed interventions, 31 patients (7.5%) were classified as true unusual responders. These included: 2 with no response, 12 with delayed response, 3 with reduced response, 6 with delayed or reduced response, 4 with lost response, and 4 with delayed and lost response. Response to PCSK9i therapy at all time points revealed higher on-treatment LDL-C values (94-100 vs. 47-51 â€‹mg/dL, p â€‹< â€‹0.001) and lower degree of percent reduction in LDL-C (23.3-34% vs. 61.1-64.5%, p â€‹< â€‹0.001) in the unusual versus usual responders. Lipoprotein (a) (Lp[a]) values were consistently higher in the unusual responders (81-92.5 vs. 28.5-52 â€‹mg/dL, p â€‹< â€‹0.01). Fold change in post-versus pre-treatment PCSK9 plasma results was similar between the two cohorts (p â€‹> â€‹0.05), suggesting that unusual responses were not due to insufficient plasma PCSK9 blockade. Multiple logistic regression analysis identified clinical FH (OR 2.9, 95% CI 1.27-7.24) and no ezetimibe therapy (OR 0.334, 95% CI 0.150-0.728) as factors related to true unusual response. CONCLUSIONS: Unusual responses to PCSK9i in a clinical cohort are more common than reported in clinical trials. Of the suspected unusual responders, nearly half were the result of adherence issues, and thus careful medication reconciliation should be the first step in diagnosing an unusual response.

7.
APL Bioeng ; 3(3): 036103, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31431939

RESUMO

Cardiac ischemic events increase the risk for arrhythmia, heart attack, heart failure, and death and are the leading mortality condition globally. Reperfusion therapy is the first line of treatment for this condition, and although it significantly reduces mortality, cardiac ischemia remains a significant threat. New therapeutic strategies are under investigation to improve the ischemia survival rate; however, the current preclinical models to validate these fail to predict the human outcome. We report the development of a functional human cardiac in vitro system for the study of conduction velocity under ischemic conditions. The system is a bioMEMs platform formed by human iPSC derived cardiomyocytes patterned on microelectrode arrays and maintained in serum-free conditions. Electrical activity changes of conduction velocity, beat frequency, and QT interval (the QT-interval measures the period from onset of depolarization to the completion of repolarization) or action potential length can be evaluated over time and under the stress of ischemia. The optimized protocol induces >80% reduction in conduction velocity, after a 4 h depletion period, and a partial recovery after 72 h of oxygen and nutrient reintroduction. The sensitivity of the platform for pharmacological interventions was challenged with a gap junction modulator (ZP1609), known to prevent or delay the depression of conduction velocity induced by ischemic metabolic stress. ZP1609 significantly improved the drastic drop in conduction velocity and enabled a greater recovery. This model represents a new preclinical platform for studying cardiac ischemia with human cells, which does not rely on biomarker analysis and has the potential for screening novel cardioprotective drugs with readouts that are closer to the measured clinical parameters.

8.
Adv Funct Mater ; 29(8)2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35586798

RESUMO

The goal of human-on-a-chip systems is to capture multi-organ complexity and predict the human response to compounds within physiologically relevant platforms. The generation and characterization of such systems is currently a focal point of research given the long-standing inadequacies of conventional techniques for predicting human outcome. Functional systems can measure and quantify key cellular mechanisms that correlate with the physiological status of a tissue, and can be used to evaluate therapeutic challenges utilizing many of the same endpoints used in animal experiments or clinical trials. Culturing multiple organ compartments in a platform creates a more physiologic environment (organ-organ communication). Here is reported a human 4-organ system composed of heart, liver, skeletal muscle and nervous system modules that maintains cellular viability and function over 28 days in serum-free conditions using a pumpless system. The integration of non-invasive electrical evaluation of neurons and cardiac cells and mechanical determination of cardiac and skeletal muscle contraction allows the monitoring of cellular function especially for chronic toxicity studies in vitro. The 28 day period is the minimum timeframe for animal studies to evaluate repeat dose toxicity. This technology could be a relevant alternative to animal testing by monitoring multi-organ function upon long term chemical exposure.

9.
Biomaterials ; 182: 176-190, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30130706

RESUMO

Regulation of cosmetic testing and poor predictivity of preclinical drug studies has spurred efforts to develop new methods for systemic toxicity. Current in vitro assays do not fully represent physiology, often lacking xenobiotic metabolism. Functional human multi-organ systems containing iPSC derived cardiomyocytes and primary hepatocytes were maintained under flow using a low-volume pumpless system in a serum-free medium. The functional readouts for contractile force and electrical conductivity enabled the non-invasive study of cardiac function. The presence of the hepatocytes in the system induced cardiotoxic effects from cyclophosphamide and reduced them for terfenadine due to drug metabolism, as expected from each compound's pharmacology. A computational fluid dynamics simulation enabled the prediction of terfenadine-fexofenadine pharmacokinetics, which was validated by HPLC-MS. This in vitro platform recapitulates primary aspects of the in vivo crosstalk between heart and liver and enables pharmacological studies, involving both organs in a single in vitro platform. The system enables non-invasive readouts of cardiotoxicity of drugs and their metabolites. Hepatotoxicity can also be evaluated by biomarker analysis and change in metabolic function. Integration of metabolic function in toxicology models can improve adverse effects prediction in preclinical studies and this system could also be used for chronic studies as well.


Assuntos
Ciclofosfamida/toxicidade , Hepatócitos/efeitos dos fármacos , Antagonistas não Sedativos dos Receptores H1 da Histamina/toxicidade , Imunossupressores/toxicidade , Dispositivos Lab-On-A-Chip , Miócitos Cardíacos/efeitos dos fármacos , Terfenadina/toxicidade , Cardiotoxicidade/etiologia , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura/instrumentação , Ciclofosfamida/metabolismo , Avaliação Pré-Clínica de Medicamentos/instrumentação , Desenho de Equipamento , Hepatócitos/citologia , Hepatócitos/metabolismo , Antagonistas não Sedativos dos Receptores H1 da Histamina/metabolismo , Humanos , Imunossupressores/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Terfenadina/metabolismo
10.
Exp Biol Med (Maywood) ; 242(17): 1701-1713, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29065797

RESUMO

Integrated multi-organ microphysiological systems are an evolving tool for preclinical evaluation of the potential toxicity and efficacy of drug candidates. Such systems, also known as Body-on-a-Chip devices, have a great potential to increase the successful conversion of drug candidates entering clinical trials into approved drugs. Systems, to be attractive for commercial adoption, need to be inexpensive, easy to operate, and give reproducible results. Further, the ability to measure functional responses, such as electrical activity, force generation, and barrier integrity of organ surrogates, enhances the ability to monitor response to drugs. The ability to operate a system for significant periods of time (up to 28 d) will provide potential to estimate chronic as well as acute responses of the human body. Here we review progress towards a self-contained low-cost microphysiological system with functional measurements of physiological responses. Impact statement Multi-organ microphysiological systems are promising devices to improve the drug development process. The development of a pumpless system represents the ability to build multi-organ systems that are of low cost, high reliability, and self-contained. These features, coupled with the ability to measure electrical and mechanical response in addition to chemical or metabolic changes, provides an attractive system for incorporation into the drug development process. This will be the most complete review of the pumpless platform with recirculation yet written.


Assuntos
Técnicas de Cultura de Células/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Dispositivos Lab-On-A-Chip , Procedimentos Analíticos em Microchip/métodos , Modelos Biológicos , Humanos
11.
Sci Rep ; 6: 20030, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26837601

RESUMO

We report on a functional human model to evaluate multi-organ toxicity in a 4-organ system under continuous flow conditions in a serum-free defined medium utilizing a pumpless platform for 14 days. Computer simulations of the platform established flow rates and resultant shear stress within accepted ranges. Viability of the system was demonstrated for 14 days as well as functional activity of cardiac, muscle, neuronal and liver modules. The pharmacological relevance of the integrated modules were evaluated for their response at 7 days to 5 drugs with known side effects after a 48 hour drug treatment regime. The results of all drug treatments were in general agreement with published toxicity results from human and animal data. The presented phenotypic culture model exhibits a multi-organ toxicity response, representing the next generation of in vitro systems, and constitutes a step towards an in vitro "human-on-a-chip" assay for systemic toxicity screening.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Fígado/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura , Meios de Cultura Livres de Soro , Células Hep G2 , Humanos , Células-Tronco Pluripotentes Induzidas , Dispositivos Lab-On-A-Chip , Fígado/citologia , Modelos Biológicos , Fibras Musculares Esqueléticas/citologia , Miócitos Cardíacos/citologia , Neurônios/citologia
12.
Biomaterials ; 60: 20-30, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25978005

RESUMO

This article details the construction and testing of a phenotypic assay system that models in vivo cardiac function in a parallel in vitro environment with human stem cell derived cardiomyocytes. The major determinants of human whole-heart function were experimentally modeled by integrating separate 2D cellular systems with BioMicroelectromechanical Systems (BioMEMS) constructs. The model features a serum-free defined medium to enable both acute and chronic evaluation of drugs and toxins. The integration of data from both systems produced biologically relevant predictions of cardiac function in response to varying concentrations of selected drugs. Sotalol, norepinephrine and verapamil were shown to affect the measured parameters according to their specific mechanism of action, in agreement with clinical data. This system is applicable for cardiac side effect assessment, general toxicology, efficacy studies, and evaluation of in vitro cellular disease models in body-on-a-chip systems.


Assuntos
Técnicas de Cultura de Células/instrumentação , Avaliação Pré-Clínica de Medicamentos/instrumentação , Coração/efeitos dos fármacos , Sistemas Microeletromecânicos/instrumentação , Miócitos Cardíacos/efeitos dos fármacos , Células Cultivadas , Desenho de Equipamento , Coração/fisiologia , Humanos , Microeletrodos , Miócitos Cardíacos/citologia
13.
Adv Drug Deliv Rev ; 69-70: 158-69, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24412641

RESUMO

Multi-organ microdevices can mimic tissue-tissue interactions that occur as a result of metabolite travel from one tissue to other tissues in vitro. These systems are capable of simulating human metabolism, including the conversion of a pro-drug to its effective metabolite as well as its subsequent therapeutic actions and toxic side effects. Since tissue-tissue interactions in the human body can play a significant role in determining the success of new pharmaceuticals, the development and use of multi-organ microdevices present an opportunity to improve the drug development process. The devices have the potential to predict potential toxic side effects with higher accuracy before a drug enters the expensive phase of clinical trials as well as to estimate efficacy and dose response. Multi-organ microdevices also have the potential to aid in the development of new therapeutic strategies by providing a platform for testing in the context of human metabolism (as opposed to animal models). Further, when operated with human biopsy samples, the devices could be a gateway for the development of individualized medicine. Here we review studies in which multi-organ microdevices have been developed and used in a ways that demonstrate how the devices' capabilities can present unique opportunities for the study of drug action. We will also discuss challenges that are inherent in the development of multi-organ microdevices. Among these are how to design the devices, and how to create devices that mimic the human metabolism with high authenticity. Since single organ devices are testing platforms for tissues that can later be combined with other tissues within multi-organ devices, we will also mention single organ devices where appropriate in the discussion.


Assuntos
Técnicas de Cultura de Células/métodos , Descoberta de Drogas/métodos , Animais , Técnicas de Cultura de Células/tendências , Descoberta de Drogas/tendências , Humanos , Técnicas de Cultura de Órgãos , Pró-Fármacos/administração & dosagem
14.
Mol Pharm ; 11(1): 254-64, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24251728

RESUMO

Gene silencing by either small-interference RNAs (siRNA) or antisense oligodeoxynucleotides (aODN) is widely used in biomedical research. However, their use as therapeutic agents is hindered by two important limitations: their low stability and the activation of the innate immune response. Recently, we developed a new type of molecule to decrease gene expression named polypurine reverse Hoogsteen hairpins (PPRHs) that bind to polypyrimidine targets in the DNA. Herein, stability experiments performed in mouse, human, and fetal calf serum and in PC3 cells revealed that the half-life of PPRHs is much longer than that of siRNAs in all cases. Usage of PPRHs with a nicked-circular structure increased the binding affinity to their target sequence and their half-life in FCS when bound to the target. Regarding the innate immune response, we determined that the levels of the transcription factors IRF3 and its phosphorylated form, as well as NF-κB were increased by siRNAs and not by PPRHs; that the expression levels of several proinflammatory cytokines including IL-6, TNF-α, IFN-α, IFN-ß, IL-1ß, and IL-18 were not significantly increased by PPRHs; and that the cleavage and activation of the proteolytic enzyme caspase-1 was not triggered by PPRHs. These determinations indicated that PPRHs, unlike siRNAs, do not activate the innate inflammatory response.


Assuntos
Neoplasias da Mama/imunologia , Inativação Gênica/imunologia , Neoplasias da Próstata/imunologia , Nucleotídeos de Purina/química , Nucleotídeos de Purina/imunologia , Animais , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células , Citocinas/genética , Citocinas/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Meia-Vida , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Masculino , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Nucleotídeos de Purina/farmacologia , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
15.
PLoS One ; 8(5): e63276, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23675469

RESUMO

BACKGROUND: Methotrexate is a chemotherapeutic agent used to treat a variety of cancers. However, the occurrence of resistance limits its effectiveness. Cytochrome c in its reduced state is less capable of triggering the apoptotic cascade. Thus, we set up to study the relationship among redox state of cytochrome c, apoptosis and the development of resistance to methotrexate in MCF7 human breast cancer cells. RESULTS: Cell incubation with cytochrome c-reducing agents, such as tetramethylphenylenediamine, ascorbate or reduced glutathione, decreased the mortality and apoptosis triggered by methotrexate. Conversely, depletion of glutathione increased the apoptotic action of methotrexate, showing an involvement of cytochrome c redox state in methotrexate-induced apoptosis. Methotrexate-resistant MCF7 cells showed increased levels of endogenous reduced glutathione and a higher capability to reduce exogenous cytochrome c. Using functional genomics we detected the overexpression of GSTM1 and GSTM4 in methotrexate-resistant MCF7 breast cancer cells, and determined that methotrexate was susceptible of glutathionylation by GSTs. The inhibition of these GSTM isoforms caused an increase in methotrexate cytotoxicity in sensitive and resistant cells. CONCLUSIONS: We conclude that overexpression of specific GSTMs, GSTM1 and GSTM4, together with increased endogenous reduced glutathione levels help to maintain a more reduced state of cytochrome c which, in turn, would decrease apoptosis, thus contributing to methotrexate resistance in human MCF7 breast cancer cells.


Assuntos
Antineoplásicos/farmacologia , Citocromos c/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Metotrexato/farmacologia , Apoptose/efeitos dos fármacos , Ácido Ascórbico/farmacologia , Citocromos c/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Glutationa/farmacologia , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Humanos , Células MCF-7 , Oxirredução/efeitos dos fármacos , Substâncias Redutoras/farmacologia , Transdução de Sinais , Tetrametilfenilenodiamina/farmacologia
16.
Mol Nutr Food Res ; 57(6): 986-95, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23293065

RESUMO

SCOPE: To identify the mechanisms by which cocoa induces HDL levels and since apolipoprotein AI (ApoAI) is the major protein in HDLs, we analyzed, upon incubation with cocoa metabolites, ApoAI mRNA levels, its transcriptional regulation, and the levels of the transcription factors involved in this process. METHODS AND RESULTS: Epicatechin and cocoa metabolites caused an increase in ApoAI expression in HepG2 cells. Electrophoretic mobility shift assays revealed the involvement of Sites A and B of the ApoAI promoter in the induction of ApoAI mRNA upon incubation with cocoa metabolites. Using supershift assays, we demonstrated the binding of HNF-3ß, HNF-4, ER-α, and RXR-α to Site A and the binding of HNF-3ß, NFY, and Sp1 to Site B. Luciferase assays performed with a construct containing Site B confirmed its role in the upregulation of ApoAI by cocoa metabolites. Incubation with 3-methyl-epicatechin led to an increase in HNF-3ß mRNA, HNF-3ß, ER-α, Sp1, and NFY protein levels and the activation of ApoAI transcription mediated by NFY, Sp1, and ER-α. CONCLUSION: The activation of ApoAI transcription through Site B by cocoa flavanol metabolites is mainly mediated by an increase in HNF-3ß, with a significant contribution of Sp1 and NFY, as a mechanism for the protective role of these compounds in cardiovascular diseases.


Assuntos
Apolipoproteína A-I/genética , Fator de Ligação a CCAAT/metabolismo , Cacau/química , Catequina/farmacologia , Flavonoides/farmacologia , Fator 3-beta Nuclear de Hepatócito/metabolismo , Fator de Transcrição Sp1/metabolismo , Apolipoproteína A-I/metabolismo , Atorvastatina , Sítios de Ligação , Cacau/metabolismo , Catequina/análogos & derivados , Catequina/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2/efeitos dos fármacos , Fator 3-beta Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Ácidos Heptanoicos/farmacologia , Humanos , Regiões Promotoras Genéticas , Pirróis/farmacologia , Fator de Transcrição Sp1/genética , Transcrição Gênica , Regulação para Cima/efeitos dos fármacos
17.
Biochem Pharmacol ; 84(12): 1581-91, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23018034

RESUMO

Sp1 is a transcription factor regulating many genes through its DNA binding domain, containing three zinc fingers. We were interested in identifying target genes regulated by Sp1, particularly those involved in proliferation and cancer. Our approach was to treat HeLa cells with a siRNA directed against Sp1 mRNA to decrease the expression of Sp1 and, in turn, the genes activated by this transcription factor. Sp1-siRNA treatment led to a great number of differentially expressed genes as determined by whole genome cDNA microarray analysis. Underexpressed genes were selected since they represent putative genes activated by Sp1 and classified in six Gene Onthology categories, namely proliferation and cancer, mRNA processing, lipid metabolism, glucidic metabolism, transcription and translation. Putative Sp1 binding sites were found in the promoters of the selected genes using the Match™ software. After literature mining, 11 genes were selected for further validation. Underexpression by qRT-PCR was confirmed for the 11 genes plus Sp1 in HeLa cells after Sp1-siRNA treatment. EMSA and ChIP assays were performed to test for binding of Sp1 to the promoters of these genes. We observed binding of Sp1 to the promoters of RAB20, FGF21, IHPK2, ARHGAP18, NPM3, SRSF7, CALM3, PGD and Sp1 itself. Furthermore, the mRNA levels of RAB20, FGF21 and IHPK2 and luciferase activity for these three genes related to proliferation and cancer, were determined after overexpression of Sp1 in HeLa cells, to confirm their regulation by Sp1. Involvement of these three genes in proliferation was validated by gene silencing using polypurine reverse hoogsteen hairpins.


Assuntos
Proliferação de Células , Genômica , Neoplasias/patologia , Fator de Transcrição Sp1/genética , Sequência de Bases , Western Blotting , Imunoprecipitação da Cromatina , Primers do DNA , Células HeLa , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição Sp1/metabolismo
18.
Oxid Med Cell Longev ; 2012: 390385, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22919439

RESUMO

BACKGROUND: Epidemiological studies suggest that coffee consumption reduces the risk of cancer, but the molecular mechanisms of its chemopreventive effects remain unknown. OBJECTIVE: To identify differentially expressed genes upon incubation of HT29 colon cancer cells with instant caffeinated coffee (ICC) or caffeic acid (CA) using whole-genome microarrays. RESULTS: ICC incubation of HT29 cells caused the overexpression of 57 genes and the underexpression of 161, while CA incubation induced the overexpression of 12 genes and the underexpression of 32. Using Venn-Diagrams, we built a list of five overexpressed genes and twelve underexpressed genes in common between the two experimental conditions. This list was used to generate a biological association network in which STAT5B and ATF-2 appeared as highly interconnected nodes. STAT5B overexpression was confirmed at the mRNA and protein levels. For ATF-2, the changes in mRNA levels were confirmed for both ICC and CA, whereas the decrease in protein levels was only observed in CA-treated cells. The levels of cyclin D1, a target gene for both STAT5B and ATF-2, were downregulated by CA in colon cancer cells and by ICC and CA in breast cancer cells. CONCLUSIONS: Coffee polyphenols are able to affect cyclin D1 expression in cancer cells through the modulation of STAT5B and ATF-2.


Assuntos
Fator 2 Ativador da Transcrição/genética , Café/química , Ciclina D1/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias/genética , Polifenóis/farmacologia , Fator de Transcrição STAT5/genética , Fator 2 Ativador da Transcrição/metabolismo , Ácidos Cafeicos/farmacologia , Cafeína/farmacologia , Linhagem Celular Tumoral , Ciclina D1/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Redes Reguladoras de Genes/genética , Genes Neoplásicos/genética , Humanos , Neoplasias/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Fator de Transcrição STAT5/metabolismo
19.
Eur J Nutr ; 51(4): 465-76, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21822728

RESUMO

PURPOSE: To evaluate the effect of cocoa flavonoids in breast cancer cells at the molecular level, a functional genomic analysis was performed using a polyphenolic cocoa extract (PCE) in MCF-7 and SKBR3 cell lines. METHODS: The expression profile of 84 genes included in the Stress & Toxicity PathwayFinder™ PCR Array was analyzed after PCE incubation for 24 h. mRNA and protein levels were analyzed by RT-PCR and western blot, respectively. Gel shift assays were used to evaluate DNA-protein complexes. Protein complexes were identified by co-immunoprecipitation. Cell viability was evaluated by MTT assays. RESULTS: Upon PCE incubation, 7 genes were overexpressed and 1 underexpressed in MCF-7 cells, whereas 9 genes were overexpressed in SKBR3 cells. Among the differentially expressed genes in both cell lines, cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) was chosen for further study. CYP1A1 mRNA and protein levels and enzymatic activity increased upon PCE incubation. CYP1A1 transcriptional activation by PCE was mediated through AhR binding to XRE elements within the CYP1A1 promoter in MCF-7 cells. A protein complex including AhR and ERα was detected. The combination of PCE with tamoxifen caused a synergistic cytotoxicity in both cell lines and was due to an increase in apoptosis in MCF-7 cells. CONCLUSIONS: The interaction between ERα and AhR upon incubation with PCE leads to CYP1A1 induction in breast cancer cells. The synergy between PCE and non-cytotoxic tamoxifen concentrations opens the possibility for a combination therapy based on polyphenols from cocoa that increased tamoxifen efficacy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Cacau/química , Citocromo P-450 CYP1A1/biossíntese , Flavonoides/farmacologia , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/química , Antioxidantes/química , Antioxidantes/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocromo P-450 CYP1A1/genética , Sinergismo Farmacológico , Indução Enzimática/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Feminino , Flavonoides/análise , Perfilação da Expressão Gênica , Humanos , Extratos Vegetais/química , RNA Mensageiro/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Elementos de Resposta/efeitos dos fármacos , Sementes/química , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/farmacologia
20.
Genome Med ; 1(9): 83, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19732436

RESUMO

BACKGROUND: The need for an integrated view of data obtained from high-throughput technologies gave rise to network analyses. These are especially useful to rationalize how external perturbations propagate through the expression of genes. To address this issue in the case of drug resistance, we constructed biological association networks of genes differentially expressed in cell lines resistant to methotrexate (MTX). METHODS: Seven cell lines representative of different types of cancer, including colon cancer (HT29 and Caco2), breast cancer (MCF-7 and MDA-MB-468), pancreatic cancer (MIA PaCa-2), erythroblastic leukemia (K562) and osteosarcoma (Saos-2), were used. The differential expression pattern between sensitive and MTX-resistant cells was determined by whole human genome microarrays and analyzed with the GeneSpring GX software package. Genes deregulated in common between the different cancer cell lines served to generate biological association networks using the Pathway Architect software. RESULTS: Dikkopf homolog-1 (DKK1) is a highly interconnected node in the network generated with genes in common between the two colon cancer cell lines, and functional validations of this target using small interfering RNAs (siRNAs) showed a chemosensitization toward MTX. Members of the UDP-glucuronosyltransferase 1A (UGT1A) family formed a network of genes differentially expressed in the two breast cancer cell lines. siRNA treatment against UGT1A also showed an increase in MTX sensitivity. Eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) was overexpressed among the pancreatic cancer, leukemia and osteosarcoma cell lines, and siRNA treatment against EEF1A1 produced a chemosensitization toward MTX. CONCLUSIONS: Biological association networks identified DKK1, UGT1As and EEF1A1 as important gene nodes in MTX-resistance. Treatments using siRNA technology against these three genes showed chemosensitization toward MTX.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA