Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Magn Reson Med ; 87(2): 629-645, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34490929

RESUMO

PURPOSE: To compare prospective motion correction (PMC) and retrospective motion correction (RMC) in Cartesian 3D-encoded MPRAGE scans and to investigate the effects of correction frequency and parallel imaging on the performance of RMC. METHODS: Head motion was estimated using a markerless tracking system and sent to a modified MPRAGE sequence, which can continuously update the imaging FOV to perform PMC. The prospective correction was applied either before each echo train (before-ET) or at every sixth readout within the ET (within-ET). RMC was applied during image reconstruction by adjusting k-space trajectories according to the measured motion. The motion correction frequency was retrospectively increased with RMC or decreased with reverse RMC. Phantom and in vivo experiments were used to compare PMC and RMC, as well as to compare within-ET and before-ET correction frequency during continuous motion. The correction quality was quantitatively evaluated using the structural similarity index measure with a reference image without motion correction and without intentional motion. RESULTS: PMC resulted in superior image quality compared to RMC both visually and quantitatively. Increasing the correction frequency from before-ET to within-ET reduced the motion artifacts in RMC. A hybrid PMC and RMC correction, that is, retrospectively increasing the correction frequency of before-ET PMC to within-ET, also reduced motion artifacts. Inferior performance of RMC compared to PMC was shown with GRAPPA calibration data without intentional motion and without any GRAPPA acceleration. CONCLUSION: Reductions in local Nyquist violations with PMC resulted in superior image quality compared to RMC. Increasing the motion correction frequency to within-ET reduced the motion artifacts in both RMC and PMC.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Movimento (Física) , Estudos Prospectivos , Estudos Retrospectivos
2.
Magn Reson Med ; 85(3): 1427-1440, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32989859

RESUMO

PURPOSE: To enable motion-robust diffusion weighted imaging of the brain using well-established imaging techniques. METHODS: An optical markerless tracking system was used to estimate and correct for rigid body motion of the head in real time during scanning. The imaging coordinate system was updated before each excitation pulse in a single-shot EPI sequence accelerated by GRAPPA with motion-robust calibration. Full Fourier imaging was used to reduce effects of motion during diffusion encoding. Subjects were imaged while performing prescribed motion patterns, each repeated with prospective motion correction on and off. RESULTS: Prospective motion correction with dynamic ghost correction enabled high quality DWI in the presence of fast and continuous motion within a 10° range. Images acquired without motion were not degraded by the prospective correction. Calculated diffusion tensors tolerated the motion well, but ADC values were slightly increased. CONCLUSIONS: Prospective correction by markerless optical tracking minimizes patient interaction and appears to be well suited for EPI-based DWI of patient groups unable to remain still including those who are not compliant with markers.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imagem Ecoplanar , Artefatos , Encéfalo/diagnóstico por imagem , Humanos , Movimento (Física) , Estudos Prospectivos
3.
J Magn Reson Imaging ; 52(3): 731-738, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32144848

RESUMO

BACKGROUND: Patient head motion is a major concern in clinical brain MRI, as it reduces the diagnostic image quality and may increase examination time and cost. PURPOSE: To investigate the prevalence of MR images with significant motion artifacts on a given clinical scanner and to estimate the potential financial cost savings of applying motion correction to clinical brain MRI examinations. STUDY TYPE: Retrospective. SUBJECTS: In all, 173 patients undergoing a PET/MRI dementia protocol and 55 pediatric patients undergoing a PET/MRI brain tumor protocol. The total scan time of the two protocols were 17 and 40 minutes, respectively. FIELD STRENGTH/SEQUENCES: 3 T, Siemens mMR Biograph, MPRAGE, DWI, T1 and T2 -weighted FLAIR, T2 -weighted 2D-FLASH, T2 -weighted TSE. ASSESSMENT: A retrospective review of image sequences from a given clinical MRI scanner was conducted to investigate the prevalence of motion-corrupted images. The review was performed by three radiologists with different levels of experience using a three-step semiquantitative scale to classify the quality of the images. A total of 1013 sequences distributed on 228 MRI examinations were reviewed. The potential cost savings of motion correction were estimated by a cost estimation for our country with assumptions. STATISTICAL TEST: The cost estimation was conducted with a 20% lower and upper bound on the model assumptions to include the uncertainty of the assumptions. RESULTS: 7.9% of the sequences had motion artifacts that decreased the interpretability, while 2.0% of the sequences had motion artifacts causing the images to be nondiagnostic. The estimated annual cost to the clinic/hospital due to patient head motion per scanner was $45,066 without pediatric examinations and $364,242 with pediatric examinations. DATA CONCLUSION: The prevalence of a motion-corrupted image was found in 2.0% of the reviewed sequences. Based on the model, repayment periods are presented as a function of the price for applying motion correction and its performance. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 6 J. Magn. Reson. Imaging 2020;52:731-738.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Artefatos , Encéfalo/diagnóstico por imagem , Criança , Humanos , Movimento (Física) , Estudos Retrospectivos
4.
PLoS One ; 14(4): e0215524, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31002725

RESUMO

OBJECTIVE: We demonstrate and evaluate the first markerless motion tracker compatible with PET, MRI, and simultaneous PET/MRI systems for motion correction (MC) of brain imaging. METHODS: PET and MRI compatibility is achieved by careful positioning of in-bore vision extenders and by placing all electronic components out-of-bore. The motion tracker is demonstrated in a clinical setup during a pediatric PET/MRI study including 94 pediatric patient scans. PET MC is presented for two of these scans using a customized version of the Multiple Acquisition Frame method. Prospective MC of MRI acquisition of two healthy subjects is demonstrated using a motion-aware MRI sequence. Real-time motion estimates are accompanied with a tracking validity parameter to improve tracking reliability. RESULTS: For both modalities, MC shows that motion induced artifacts are noticeably reduced and that motion estimates are sufficiently accurate to capture motion ranging from small respiratory motion to large intentional motion. In the PET/MRI study, a time-activity curve analysis shows image improvements for a patient performing head movements corresponding to a tumor motion of ±5-10 mm with a 19% maximal difference in standardized uptake value before and after MC. CONCLUSION: The first markerless motion tracker is successfully demonstrated for prospective MC in MRI and MC in PET with good tracking validity. SIGNIFICANCE: As simultaneous PET/MRI systems have become available for clinical use, an increasing demand for accurate motion tracking and MC in PET/MRI scans has emerged. The presented markerless motion tracker facilitate this demand.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos , Criança , Movimentos da Cabeça , Humanos , Movimento (Física) , Neoplasias/diagnóstico por imagem , Estudos Prospectivos , Reprodutibilidade dos Testes
5.
J Cereb Blood Flow Metab ; 39(5): 782-793, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29333914

RESUMO

In this study, a new hybrid PET/MRI method for quantitative regional cerebral blood flow (rCBF) measurements in healthy newborn infants was assessed and the low values of rCBF in white matter previously obtained by arterial spin labeling (ASL) were tested. Four healthy full-term newborn subjects were scanned in a PET/MRI scanner during natural sleep after median intravenous injection of 14 MBq 15O-water. Regional CBF was quantified using a one-tissue-compartment model employing an image-derived input function (IDIF) from the left ventricle. PET rCBF showed the highest values in the thalami, mesencephalon and brain stem and the lowest in cortex and unmyelinated white matter. The average global CBF was 17.8 ml/100 g/min. The average frontal and occipital unmyelinated white matter CBF was 10.3 ml/100 g/min and average thalamic CBF 31.3 ml/100 g/min. The average white matter/thalamic ratio CBF was 0.36, significantly higher than previous ASL data. The rCBF ASL measurements were all unsuccessful primarily owing to subject movement. In this study, we demonstrated for the first time, a minimally invasive PET/MRI method using low activity 15O-water PET for quantitative rCBF assessment in unsedated healthy newborn infants and found a white/grey matter CBF ratio similar to that of the adult human brain.


Assuntos
Encéfalo/irrigação sanguínea , Circulação Cerebrovascular , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Feminino , Humanos , Recém-Nascido , Masculino , Radioisótopos de Oxigênio/análise , Marcadores de Spin , Água/análise
6.
IEEE Trans Med Imaging ; 32(2): 200-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23008249

RESUMO

A custom designed markerless tracking system was demonstrated to be applicable for positron emission tomography (PET) brain imaging. Precise head motion registration is crucial for accurate motion correction (MC) in PET imaging. State-of-the-art tracking systems applied with PET brain imaging rely on markers attached to the patient's head. The marker attachment is the main weakness of these systems. A healthy volunteer participating in a cigarette smoking study to image dopamine release was scanned twice for 2 h with (11)C-racolopride on the high resolution research tomograph (HRRT) PET scanner. Head motion was independently measured, with a commercial marker-based device and the proposed vision-based system. A list-mode event-by-event reconstruction algorithm using the detected motion was applied. A phantom study with hand-controlled continuous random motion was obtained. Motion was time-varying with long drift motions of up to 18 mm and regular step-wise motion of 1-6 mm. The evaluated measures were significantly better for motion-corrected images compared to no MC. The demonstrated system agreed with a commercial integrated system. Motion-corrected images were improved in contrast recovery of small structures.


Assuntos
Algoritmos , Pontos de Referência Anatômicos/diagnóstico por imagem , Artefatos , Encéfalo/diagnóstico por imagem , Marcadores Fiduciais , Movimentos da Cabeça , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Humanos , Movimento (Física) , Projetos Piloto , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
J Nucl Med ; 53(3): 495-504, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22331217

RESUMO

UNLABELLED: Many authors have reported the importance of motion correction (MC) for PET. Patient motion during scanning disturbs kinetic analysis and degrades resolution. In addition, using misaligned transmission for attenuation and scatter correction may produce regional quantification bias in the reconstructed emission images. The purpose of this work was the development of quality control (QC) methods for MC procedures based on external motion tracking (EMT) for human scanning using an optical motion tracking system. METHODS: Two scans with minor motion and 5 with major motion (as reported by the optical motion tracking system) were selected from (18)F-FDG scans acquired on a PET scanner. The motion was measured as the maximum displacement of the markers attached to the subject's head and was considered to be major if larger than 4 mm and minor if less than 2 mm. After allowing a 40- to 60-min uptake time after tracer injection, we acquired a 6-min transmission scan, followed by a 40-min emission list-mode scan. Each emission list-mode dataset was divided into 8 frames of 5 min. The reconstructed time-framed images were aligned to a selected reference frame using either EMT or the AIR (automated image registration) software. The following 3 QC methods were used to evaluate the EMT and AIR MC: a method using the ratio between 2 regions of interest with gray matter voxels (GM) and white matter voxels (WM), called GM/WM; mutual information; and cross correlation. RESULTS: The results of the 3 QC methods were in agreement with one another and with a visual subjective inspection of the image data. Before MC, the QC method measures varied significantly in scans with major motion and displayed limited variations on scans with minor motion. The variation was significantly reduced and measures improved after MC with AIR, whereas EMT MC performed less well. CONCLUSION: The 3 presented QC methods produced similar results and are useful for evaluating tracer-independent external-tracking motion-correction methods for human brain scans.


Assuntos
Encéfalo/diagnóstico por imagem , Fluordesoxiglucose F18 , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Algoritmos , Artefatos , Simulação por Computador , Humanos , Movimento (Física) , Controle de Qualidade , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA