Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673818

RESUMO

Traumatic brain injury (TBI) significantly contributes to death and disability worldwide. However, treatment options remain limited. Here, we focus on a specific pathology of TBI, diffuse axonal brain injury (DABI), which describes the process of the tearing of nerve fibers in the brain after blunt injury. Most protocols to study DABI do not incorporate a specific model for that type of pathology, limiting their ability to identify mechanisms and comorbidities of DABI. In this study, we developed a magnetic resonance imaging (MRI) protocol for DABI in a rat model using a 3-T clinical scanner. We compared the neuroimaging outcomes with histologic and neurologic assessments. In a sample size of 10 rats in the sham group and 10 rats in the DABI group, we established neurological severity scores before the intervention and at 48 h following DABI induction. After the neurological evaluation after DABI, all rats underwent MRI scans and were subsequently euthanized for histological evaluation. As expected, the neurological assessment showed a high sensitivity for DABI lesions indicated using the ß-APP marker. Surprisingly, however, we found that the MRI method had greater sensitivity in assessing DABI lesions compared to histological methods. Out of the five MRI parameters with pathological changes in the DABI model, we found significant changes compared to sham rats in three parameters, and, as shown using comparative tests with other models, MRI was the most sensitive parameter, being even more sensitive than histology. We anticipate that this DABI protocol will have a significant impact on future TBI and DABI studies, advancing research on treatments specifically targeted towards improving patient quality of life and long-term outcomes.


Assuntos
Lesão Axonal Difusa , Modelos Animais de Doenças , Imageamento por Ressonância Magnética , Animais , Imageamento por Ressonância Magnética/métodos , Ratos , Masculino , Lesão Axonal Difusa/diagnóstico por imagem , Lesão Axonal Difusa/patologia , Ratos Sprague-Dawley , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/patologia
2.
Nutrients ; 16(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542812

RESUMO

There is a growing body of evidence that suggests a connection between traumatic brain injury (TBI) and subsequent post-traumatic stress disorder (PTSD). While the exact mechanism is unknown, we hypothesize that chronic glutamate neurotoxicity may play a role. The consumption of dietary glutamate is a modifiable factor influencing glutamate levels in the blood and, therefore, in the brain. In this systematic review, we explored the relationship between dietary glutamate and the development of post-TBI PTSD. Of the 1748 articles identified, 44 met the inclusion criteria for analysis in this review. We observed that individuals from countries with diets traditionally high in glutamate had greater odds of developing PTSD after TBI (odds ratio = 15.2, 95% confidence interval 11.69 to 19.76, p < 0.01). These findings may support the hypothesis that chronically elevated blood glutamate concentrations caused by high dietary intake invoke neurodegeneration processes that could ultimately result in PTSD. Further studies will clarify whether lowering glutamate via diet would be an effective strategy in preventing or treating post-TBI PTSD.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/etiologia , Ácido Glutâmico , Lesões Encefálicas Traumáticas/complicações , Encéfalo
3.
Nutrients ; 15(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37960334

RESUMO

Traumatic brain injury (TBI) has a profound impact on cognitive and mental functioning, leading to lifelong impairment and significantly diminishing the quality of life for affected individuals. A healthy blood-brain barrier (BBB) plays a crucial role in guarding the brain against elevated levels of blood glutamate, making its permeability a vital aspect of glutamate regulation within the brain. Studies have shown the efficacy of reducing excess glutamate in the brain as a treatment for post-TBI depression, anxiety, and aggression. The purpose of this article is to evaluate the involvement of dietary glutamate in the development of depression after TBI. We performed a literature search to examine the effects of diets abundant in glutamate, which are common in Asian populations, when compared to diets low in glutamate, which are prevalent in Europe and America. We specifically explored these effects in the context of chronic BBB damage after TBI, which may initiate neurodegeneration and subsequently have an impact on depression through the mechanism of chronic glutamate neurotoxicity. A glutamate-rich diet leads to increased blood glutamate levels when contrasted with a glutamate-poor diet. Within the context of chronic BBB disruption, elevated blood glutamate levels translate to heightened brain glutamate concentrations, thereby intensifying neurodegeneration due to glutamate neurotoxicity.


Assuntos
Barreira Hematoencefálica , Lesões Encefálicas Traumáticas , Humanos , Ácido Glutâmico/farmacologia , Depressão/etiologia , Qualidade de Vida , Lesões Encefálicas Traumáticas/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA