Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Front Mol Neurosci ; 16: 1114857, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37435576

RESUMO

Post-transcriptional gene regulation is a fundamental mechanism that helps regulate the development and healthy aging of the nervous system. Mutations that disrupt the function of RNA-binding proteins (RBPs), which regulate post-transcriptional gene regulation, have increasingly been implicated in neurological disorders including amyotrophic lateral sclerosis, Fragile X Syndrome, and spinal muscular atrophy. Interestingly, although the majority of RBPs are expressed widely within diverse tissue types, the nervous system is often particularly sensitive to their dysfunction. It is therefore critical to elucidate how aberrant RNA regulation that results from the dysfunction of ubiquitously expressed RBPs leads to tissue specific pathologies that underlie neurological diseases. The highly conserved RBP and alternative splicing factor Caper is widely expressed throughout development and is required for the development of Drosophila sensory and motor neurons. Furthermore, caper dysfunction results in larval and adult locomotor deficits. Nonetheless, little is known about which proteins interact with Caper, and which RNAs are regulated by Caper. Here we identify proteins that interact with Caper in both neural and muscle tissue, along with neural specific Caper target RNAs. Furthermore, we show that a subset of these Caper-interacting proteins and RNAs genetically interact with caper to regulate Drosophila gravitaxis behavior.

2.
J Dev Biol ; 11(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36648904

RESUMO

RNA binding proteins (RBPs) play a fundamental role in the post-transcriptional regulation of gene expression within the germline and nervous system. This is underscored by the prevalence of mutations within RBP-encoding genes being implicated in infertility and neurological disease. We previously described roles for the highly conserved RBP Caper in neurite morphogenesis in the Drosophila larval peripheral system and in locomotor behavior. However, caper function has not been investigated outside the nervous system, although it is widely expressed in many different tissue types during embryogenesis. Here, we describe novel roles for Caper in fertility and mating behavior. We find that Caper is expressed in ovarian follicles throughout oogenesis but is dispensable for proper patterning of the egg chamber. Additionally, reduced caper function, through either a genetic lesion or RNA interference-mediated knockdown of caper in the female germline, results in females laying significantly fewer eggs than their control counterparts. Moreover, this phenotype is exacerbated with age. caper dysfunction also results in partial embryonic and larval lethality. Given that caper is highly conserved across metazoa, these findings may also be relevant to vertebrates.

3.
Front Genet ; 12: 775395, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899861

RESUMO

Alternative splicing is a fundamental mechanism of eukaryotic RNA regulation that increases the transcriptomic and proteomic complexity within an organism. Moreover, alternative splicing provides a framework for generating unique yet complex tissue- and cell type-specific gene expression profiles, despite using a limited number of genes. Recent efforts to understand the negative consequences of aberrant splicing have increased our understanding of developmental and neurodegenerative diseases such as spinal muscular atrophy, frontotemporal dementia and Parkinsonism linked to chromosome 17, myotonic dystrophy, and amyotrophic lateral sclerosis. Moreover, these studies have led to the development of innovative therapeutic treatments for diseases caused by aberrant splicing, also known as spliceopathies. Despite this, a paucity of information exists on the physiological roles and specific functions of distinct transcript spliceforms for a given gene. Here, we will highlight work that has specifically explored the distinct functions of protein-coding spliceforms during development. Moreover, we will discuss the use of alternative splicing of noncoding exons to regulate the stability and localization of RNA transcripts.

4.
BMC Res Notes ; 14(1): 311, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34391474

RESUMO

OBJECTIVE: RNA-binding proteins (RBPs) are important regulators of gene expression that influence mRNA splicing, stability, localization, transport, and translational control. In particular, RBPs play an important role in neurons, which have a complex morphology. Previously, we showed that there are many RBPs that play a conserved role in dendrite development in Drosophila dendritic arborization neurons and Caenorhabditis elegans (C. elegans) PVD neurons including the cytoplasmic polyadenylation element binding proteins (CPEBs), Orb in Drosophila and CPB-3 in C. elegans, and the DEAD box RNA helicases, Me31B in Drosophila and CGH-1 in C. elegans. During these studies, we observed that fluorescently-labeled CPB-3 and CGH-1 localize to cytoplasmic particles that are motile, and our research aims to further characterize these RBP-containing particles in live neurons. RESULTS: Here we extend on previous work to show that CPB-3 and CGH-1 localize to motile particles within dendrites that move at a speed consistent with microtubule-based transport. This is consistent with a model in which CPB-3 and CGH-1 influence dendrite development through the transport and localization of their mRNA targets. Moreover, CPB-3 and CGH-1 rarely localize to the same particles suggesting that these RBPs function in discrete ribonucleoprotein particles (RNPs) that may regulate distinct mRNAs.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Dendritos , RNA Nucleotidiltransferases , Proteínas de Ligação a RNA/genética , Células Receptoras Sensoriais/metabolismo
5.
Dev Biol ; 473: 15-32, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33508255

RESUMO

RNA-binding proteins play an important role in the regulation of post-transcriptional gene expression throughout the nervous system. This is underscored by the prevalence of mutations in genes encoding RNA splicing factors and other RNA-binding proteins in a number of neurodegenerative and neurodevelopmental disorders. The highly conserved alternative splicing factor Caper is widely expressed throughout the developing embryo and functions in the development of various sensory neural subtypes in the Drosophila peripheral nervous system. Here we find that caper dysfunction leads to aberrant neuromuscular junction morphogenesis, as well as aberrant locomotor behavior during larval and adult stages. Despite its widespread expression, our results indicate that caper function is required to a greater extent within the nervous system, as opposed to muscle, for neuromuscular junction development and for the regulation of adult locomotor behavior. Moreover, we find that Caper interacts with the RNA-binding protein Fmrp to regulate adult locomotor behavior. Finally, we show that caper dysfunction leads to various phenotypes that have both a sex and age bias, both of which are commonly seen in neurodegenerative disorders in humans.


Assuntos
Junção Neuromuscular/genética , Fatores de Processamento de RNA/metabolismo , Fatores Etários , Envelhecimento/metabolismo , Processamento Alternativo/genética , Processamento Alternativo/fisiologia , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Larva/metabolismo , Morfogênese/genética , Sistema Nervoso/metabolismo , Neurogênese/genética , Junção Neuromuscular/metabolismo , Fenótipo , Fatores de Processamento de RNA/genética
6.
Gene ; 738: 144473, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32057929

RESUMO

Cytoplasmic polyadenylation element binding proteins (CPEBs) are widely conserved proteins that regulate the length of poly(A) tails in the cytoplasm, regulate translation, and regulate mRNA transport. While CPEBs are best known for regulating maternal messages in oocytes, CPEBs also have roles in many other cell types including neurons. Here we extend our knowledge of the roles of CPEBs in neurons by showing that the Drosophila CPEB-encoding gene, orb, is required for proper dendrite development in larval sensory dendritic arborization neurons. Furthermore, we provide evidence that orb is important for neuron cell fate specification.


Assuntos
Dendritos/metabolismo , Proteínas de Drosophila/metabolismo , Neurônios/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Linhagem da Célula/fisiologia , Citoplasma/metabolismo , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Larva/genética , Neurogênese/fisiologia , Proteínas de Ligação a Poli(A)/metabolismo , Poliadenilação , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/fisiologia , Fatores de Transcrição/genética
7.
Dev Biol ; 444(2): 116-128, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30352216

RESUMO

RNA binding proteins (RBPs) mediate posttranscriptional gene regulatory events throughout development. During neurogenesis, many RBPs are required for proper dendrite morphogenesis within Drosophila sensory neurons. Despite their fundamental role in neuronal morphogenesis, little is known about the molecular mechanisms in which most RBPs participate during neurogenesis. In Drosophila, alan shepard (shep) encodes a highly conserved RBP that regulates dendrite morphogenesis in sensory neurons. Moreover, the C. elegans ortholog sup-26 has also been implicated in sensory neuron dendrite morphogenesis. Nonetheless, the molecular mechanism by which Shep/SUP-26 regulate dendrite development is not understood. Here we show that Shep interacts with the RBPs Trailer Hitch (Tral), Ypsilon schachtel (Yps), Belle (Bel), and Poly(A)-Binding Protein (PABP), to direct dendrite morphogenesis in Drosophila sensory neurons. Moreover, we identify a conserved set of Shep/SUP-26 target RNAs that include regulators of cell signaling, posttranscriptional gene regulators, and known regulators of dendrite development.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Dendritos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Metamorfose Biológica/genética , Morfogênese/fisiologia , Neurogênese/genética , Proteínas de Ligação a RNA/fisiologia , Ribonucleoproteínas/metabolismo , Células Receptoras Sensoriais/metabolismo
8.
J Dev Biol ; 6(3)2018 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-30126171

RESUMO

An outstanding question in developmental neurobiology is how RNA processing events contribute to the regulation of neurogenesis. RNA processing events are increasingly recognized as playing fundamental roles in regulating multiple developmental events during neurogenesis, from the asymmetric divisions of neural stem cells, to the generation of complex and diverse neurite morphologies. Indeed, both asymmetric cell division and neurite morphogenesis are often achieved by mechanisms that generate asymmetric protein distributions, including post-transcriptional gene regulatory mechanisms such as the transport of translationally silent messenger RNAs (mRNAs) and local translation of mRNAs within neurites. Additionally, defects in RNA splicing have emerged as a common theme in many neurodegenerative disorders, highlighting the importance of RNA processing in maintaining neuronal circuitry. RNA-binding proteins (RBPs) play an integral role in splicing and post-transcriptional gene regulation, and mutations in RBPs have been linked with multiple neurological disorders including autism, dementia, amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), Fragile X syndrome (FXS), and X-linked intellectual disability disorder. Despite their widespread nature and roles in neurological disease, the molecular mechanisms and networks of regulated target RNAs have been defined for only a small number of specific RBPs. This review aims to highlight recent studies in Drosophila that have advanced our knowledge of how RBP dysfunction contributes to neurological disease.

9.
Dev Dyn ; 246(8): 610-624, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28543982

RESUMO

BACKGROUND: Alternative splicing mediated by RNA-binding proteins (RBPs) is emerging as a fundamental mechanism for the regulation of gene expression. Alternative splicing has been shown to be a widespread phenomenon that facilitates the diversification of gene products in a tissue-specific manner. Although defects in alternative splicing are rooted in many neurological disorders, only a small fraction of splicing factors have been investigated in detail. RESULTS: We find that the splicing factor Caper is required for the development of multiple different mechanosensory neuron subtypes at multiple life stages in Drosophila melanogaster. Disruption of Caper function causes defects in dendrite morphogenesis of larval dendrite arborization neurons and neuronal positioning of embryonic proprioceptors, as well as the development and maintenance of adult mechanosensory bristles. Additionally, we find that Caper dysfunction results in aberrant locomotor behavior in adult flies. Transcriptome-wide analyses further support a role for Caper in alternative isoform regulation of genes that function in neurogenesis. CONCLUSIONS: Our results provide the first evidence for a fundamental and broad requirement for the highly conserved splicing factor Caper in the development and maintenance of the nervous system and provide a framework for future studies on the detailed mechanism of Caper-mediated RNA regulation. Developmental Dynamics 246:610-624, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Doenças Vasculares Periféricas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo , Animais , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hemodinâmica/genética , Hemodinâmica/fisiologia , Metamorfose Biológica/genética , Metamorfose Biológica/fisiologia , Doenças Vasculares Periféricas/genética , Proteínas de Ligação a RNA/genética , Pele/citologia , Pele/metabolismo
10.
Dev Genes Evol ; 225(6): 319-30, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26271810

RESUMO

The Caenorhabditis elegans gene sup-26 encodes a well-conserved RNA-recognition motif-containing RNA-binding protein (RBP) that functions in dendrite morphogenesis of the PVD sensory neuron. The Drosophila ortholog of sup-26, alan shepard (shep), is expressed throughout the nervous system and has been shown to regulate neuronal remodeling during metamorphosis. Here, we extend these studies to show that sup-26 and shep are required for the development of diverse cell types within the nematode and fly nervous systems during embryonic and larval stages. We ascribe roles for sup-26 in regulating dendrite number and the expression of genes involved in mechanosensation within the nematode peripheral nervous system. We also find that in Drosophila, shep regulates dendrite length and branch order of nociceptive neurons, regulates the organization of neuronal clusters of the peripheral nervous system and the organization of axons within the ventral nerve cord. Taken together, our results suggest that shep/sup-26 orthologs play diverse roles in neural development across animal species. Moreover, we discuss potential roles for shep/sup-26 orthologs in the human nervous system.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Drosophila/genética , Embrião não Mamífero/metabolismo , Sistema Nervoso/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/metabolismo , Dendritos/genética , Dendritos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Metamorfose Biológica/genética , Microscopia Confocal , Morfogênese/genética , Sistema Nervoso/embriologia , Sistema Nervoso/crescimento & desenvolvimento , Interferência de RNA , Proteínas de Ligação a RNA/metabolismo
11.
Mol Ecol ; 24(15): 3810-22, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26033315

RESUMO

One of the fundamental goals in evolution and ecology is to identify the genetic basis of adaptive phenotypes. Unfortunately, progress towards this goal has been hampered by a lack of genetic tools available for nonmodel organisms. The exciting new development of the CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 (CRISPR-associated nuclease 9) genome-editing system now promises to transform the field of molecular ecology by providing a versatile toolkit for manipulating the genome of a wide variety of organisms. Here, we review the numerous applications of this groundbreaking technology and provide a practical guide to the creation of genetic knockouts, transgenics and other related forms of gene manipulation in nonmodel organisms. We also specifically discuss the potential uses of the CRISPR/Cas9 system in ecological and evolutionary studies, which will further advance the field towards the long-standing goal of connecting genotypes, phenotypes and fitness.


Assuntos
Sistemas CRISPR-Cas , Aptidão Genética , Genótipo , Fenótipo , Evolução Biológica , Ecologia/métodos , Técnicas de Inativação de Genes , Engenharia Genética/métodos , Vetores Genéticos , Organismos Geneticamente Modificados
12.
G3 (Bethesda) ; 5(4): 639-53, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25673135

RESUMO

The regulation of dendritic branching is critical for sensory reception, cell-cell communication within the nervous system, learning, memory, and behavior. Defects in dendrite morphology are associated with several neurologic disorders; thus, an understanding of the molecular mechanisms that govern dendrite morphogenesis is important. Recent investigations of dendrite morphogenesis have highlighted the importance of gene regulation at the posttranscriptional level. Because RNA-binding proteins mediate many posttranscriptional mechanisms, we decided to investigate the extent to which conserved RNA-binding proteins contribute to dendrite morphogenesis across phyla. Here we identify a core set of RNA-binding proteins that are important for dendrite morphogenesis in the PVD multidendritic sensory neuron in Caenorhabditis elegans. Homologs of each of these genes were previously identified as important in the Drosophila melanogaster dendritic arborization sensory neurons. Our results suggest that RNA processing, mRNA localization, mRNA stability, and translational control are all important mechanisms that contribute to dendrite morphogenesis, and we present a conserved set of RNA-binding proteins that regulate these processes in diverse animal species. Furthermore, homologs of these genes are expressed in the human brain, suggesting that these RNA-binding proteins are candidate regulators of dendrite development in humans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Dendritos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/metabolismo , Morfogênese/fisiologia , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética
13.
G3 (Bethesda) ; 4(2): 297-306, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24347626

RESUMO

The large number of RNA-binding proteins and translation factors encoded in the Drosophila and other metazoan genomes predicts widespread use of post-transcriptional regulation in cellular and developmental processes. Previous studies identified roles for several RNA-binding proteins in dendrite branching morphogenesis of Drosophila larval sensory neurons. To determine the larger contribution of post-transcriptional gene regulation to neuronal morphogenesis, we conducted an RNA interference screen to identify additional Drosophila proteins annotated as either RNA-binding proteins or translation factors that function in producing the complex dendritic trees of larval class IV dendritic arborization neurons. We identified 88 genes encoding such proteins whose knockdown resulted in aberrant dendritic morphology, including alterations in dendritic branch number, branch length, field size, and patterning of the dendritic tree. In particular, splicing and translation initiation factors were associated with distinct and characteristic phenotypes, suggesting that different morphogenetic events are best controlled at specific steps in post-transcriptional messenger RNA metabolism. Many of the factors identified in the screen have been implicated in controlling the subcellular distributions and translation of maternal messenger RNAs; thus, common post-transcriptional regulatory strategies may be used in neurogenesis and in the generation of asymmetry in the female germline and embryo.


Assuntos
Dendritos/metabolismo , Proteínas de Drosophila/genética , Drosophila/genética , Morfogênese/genética , Neurogênese/genética , Proteínas de Ligação a RNA/genética , Células Receptoras Sensoriais/metabolismo , Animais , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Larva/citologia , Larva/metabolismo , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Células Receptoras Sensoriais/citologia
14.
Dev Cell ; 25(1): 93-105, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23597484

RESUMO

Stochastic mechanisms are sometimes utilized to diversify cell fates, especially in nervous systems. In the Drosophila retina, stochastic expression of the PAS-bHLH transcription factor Spineless (Ss) controls photoreceptor subtype choice. In one randomly distributed subset of R7 photoreceptors, Ss activates Rhodopsin4 (Rh4) and represses Rhodopsin3 (Rh3); counterparts lacking Ss express Rh3 and repress Rh4. In the dorsal third region of the retina, the Iroquois Complex transcription factors induce Rh3 in Rh4-expressing R7s. Here, we show that Ss levels are controlled in a binary on/off manner throughout the retina yet are attenuated in the dorsal third region to allow Rh3 coexpression with Rh4. Whereas the sensitivity of rh3 repression to differences in Ss levels generates stochastic and regionalized patterns, the robustness of rh4 activation ensures its stochastic expression throughout the retina. Our findings show how stochastic and regional inputs are integrated to control photoreceptor subtype specification in the Drosophila retina.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Células Fotorreceptoras de Vertebrados/fisiologia , Receptores de Hidrocarboneto Arílico/metabolismo , Retina/fisiologia , Alelos , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrião não Mamífero/metabolismo , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Mutação , Fenótipo , Células Fotorreceptoras de Vertebrados/citologia , Células Fotorreceptoras de Vertebrados/metabolismo , Regiões Promotoras Genéticas , Multimerização Proteica , Estrutura Terciária de Proteína , Receptores de Hidrocarboneto Arílico/genética , Retina/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Especificidade da Espécie , Transcrição Gênica
15.
Dev Biol ; 365(1): 208-18, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22391052

RESUMO

The translational regulators Nanos (Nos) and Pumilio (Pum) work together to regulate the morphogenesis of dendritic arborization (da) neurons of the Drosophila larval peripheral nervous system. In contrast, Nos and Pum function in opposition to one another in the neuromuscular junction to regulate the morphogenesis and the electrophysiological properties of synaptic boutons. Neither the cellular functions of Nos and Pum nor their regulatory targets in neuronal morphogenesis are known. Here we show that Nos and Pum are required to maintain the dendritic complexity of da neurons during larval growth by promoting the outgrowth of new dendritic branches and the stabilization of existing dendritic branches, in part by regulating the expression of cut and head involution defective. Through an RNA interference screen we uncover a role for the translational co-factor Brain Tumor (Brat) in dendrite morphogenesis of da neurons and demonstrate that Nos, Pum, and Brat interact genetically to regulate dendrite morphogenesis. In the neuromuscular junction, Brat function is most likely specific for Pum in the presynaptic regulation of bouton morphogenesis. Our results reveal how the combinatorial use of co-regulators like Nos, Pum and Brat can diversify their roles in post-transcriptional regulation of gene expression for neuronal morphogenesis.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/embriologia , Neurônios/citologia , Proteínas de Ligação a RNA/fisiologia , Animais , Diferenciação Celular , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Larva/citologia , Larva/fisiologia , Morfogênese , Processamento Pós-Transcricional do RNA
16.
Genesis ; 48(11): 656-66, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20836130

RESUMO

The PR domain containing 1a, with ZNF domain factor, gene (prdm1a) plays an integral role in the development of a number of different cell types during vertebrate embryogenesis, including neural crest cells, Rohon-Beard (RB) sensory neurons and the cranial neural crest-derived craniofacial skeletal elements. To better understand how Prdm1a regulates the development of various cell types in zebrafish, we performed a microarray analysis comparing wild type and prdm1a mutant embryos and identified a number of genes with altered expression in the absence of prdm1a. Rescue analysis determined that two of these, sox10 and islet1, lie downstream of Prdm1a in the development of neural crest cells and RB neurons, respectively. In addition, we identified a number of other novel downstream targets of Prdm1a that may be important for the development of diverse tissues during zebrafish embryogenesis.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas de Homeodomínio/genética , Crista Neural/embriologia , Proteínas Nucleares/fisiologia , Fatores de Transcrição SOXE/genética , Células Receptoras Sensoriais/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes/fisiologia , Proteínas de Homeodomínio/metabolismo , Proteínas com Homeodomínio LIM , Crista Neural/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo , Fatores de Transcrição SOXE/metabolismo , Células Receptoras Sensoriais/metabolismo , Fatores de Transcrição , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
17.
Dev Biol ; 306(1): 134-42, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17434472

RESUMO

mRNA localization is a powerful mechanism for targeting factors to different regions of the cell and is used in Drosophila to pattern the early embryo. During oogenesis of the wasp Nasonia, mRNA localization is used extensively to replace the function of the Drosophila bicoid gene for the initiation of patterning along the antero-posterior axis. Nasonia localizes both caudal and nanos to the posterior pole, whereas giant mRNA is localized to the anterior pole of the oocyte; orthodenticle1 (otd1) is localized to both the anterior and posterior poles. The abundance of differentially localized mRNAs during Nasonia oogenesis provided a unique opportunity to study the different mechanisms involved in mRNA localization. Through pharmacological disruption of the microtubule network, we found that both anterior otd1 and giant, as well as posterior caudal mRNA localization was microtubule-dependent. Conversely, posterior otd1 and nanos mRNA localized correctly to the posterior upon microtubule disruption. However, actin is important in anchoring these two posteriorly localized mRNAs to the oosome, the structure containing the pole plasm. Moreover, we find that knocking down the functions of the genes tudor and Bicaudal-D mimics disruption of microtubules, suggesting that tudor's function in Nasonia is different from flies, where it is involved in formation of the pole plasm.


Assuntos
Padronização Corporal/genética , Proteínas de Insetos/genética , Oócitos/metabolismo , Oogênese/genética , RNA Mensageiro/metabolismo , Vespas/embriologia , Actinas/genética , Animais , Polaridade Celular , Proteínas do Citoesqueleto/genética , Embrião não Mamífero/metabolismo , Feminino , Genes de Insetos , Proteínas de Insetos/antagonistas & inibidores , Microtúbulos/metabolismo , Oócitos/química , Oócitos/ultraestrutura , RNA Mensageiro/análise , Vespas/química , Vespas/genética
18.
Development ; 133(20): 3973-82, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16971471

RESUMO

One of the earliest steps of embryonic development is the establishment of polarity along the anteroposterior axis. Extensive studies of Drosophila embryonic development have elucidated mechanisms for establishing polarity, while studies with other model systems have found that many of these molecular components are conserved through evolution. One exception is Bicoid, the master organizer of anterior development in Drosophila and higher dipterans, which is not conserved. Thus, the study of anteroposterior patterning in insects that lack Bicoid can provide insight into the evolution of the diversity of body plan patterning networks. To this end, we have established the long germ parasitic wasp Nasonia vitripennis as a model for comparative studies with Drosophila. Here we report that, in Nasonia, a gradient of localized caudal mRNA directs posterior patterning, whereas, in Drosophila, the gradient of maternal Caudal protein is established through translational repression by Bicoid of homogeneous caudal mRNA. Loss of caudal function in Nasonia results in severe segmentation defects. We show that Nasonia caudal is an activator of gap gene expression that acts far towards the anterior of the embryo, placing it atop a cascade of early patterning. By contrast, activation of gap genes in flies relies on redundant functions of Bicoid and Caudal, leading to a lack of dramatic action on gap gene expression: caudal instead plays a limited role as an activator of pair-rule gene expression. These studies, together with studies in short germ insects, suggest that caudal is an ancestral master organizer of patterning, and that its role has been reduced in higher dipterans such as Drosophila.


Assuntos
Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/fisiologia , RNA Mensageiro/metabolismo , Vespas/embriologia , Animais , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Embrião não Mamífero/química , Embrião não Mamífero/metabolismo , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/genética , Mutação , Ovário/química , Ovário/embriologia , Interferência de RNA , RNA Mensageiro/análise , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Vespas/química , Vespas/genética , Zigoto
19.
Dev Genes Evol ; 216(7-8): 493-8, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16670873

RESUMO

In the long germ insect Drosophila, the gene tailless acts to pattern the terminal regions of the embryo. Loss of function of this gene results in the deletion of the anterior and posterior terminal structures and the eighth abdominal segment. Drosophila tailless is activated by the maternal terminal system through Torso signaling at both poles of the embryo, with additional activation by Bicoid at the anterior. Here, we describe the expression and function of tailless in a long germ Hymenoptera, the wasp Nasonia vitripennis. Despite the morphological similarities in the mode of development of these two insects, we find major differences in the regulation and function of tailless between Nasonia and Drosophila. In contrast to the fly, Nasonia tll appears to rely on otd for its activation at both poles. In addition, the anterior domain of Nasonia tll appears to have little or no segmental patterning function, while the posterior tll domain has a much more extensive patterning role than its Drosophila counterpart.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Receptores Citoplasmáticos e Nucleares/genética , Vespas/embriologia , Animais , Padronização Corporal/genética , Embrião não Mamífero/química , Embrião não Mamífero/metabolismo , Receptores Citoplasmáticos e Nucleares/análise , Vespas/química , Vespas/genética
20.
DNA Repair (Amst) ; 3(12): 1537-48, 2004 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-15474416

RESUMO

DNA damage located within a gene's transcription unit can cause RNA polymerase to stall at the modified site, resulting in a truncated transcript, or progress past, producing full-length RNA. However, it is not immediately apparent why some lesions pose strong barriers to elongation while others do not. Studies using site-specifically damaged DNA templates have demonstrated that a wide range of lesions can impede the progress of elongating transcription complexes. The collected results of this work provide evidence for the idea that subtle structural elements can influence how an RNA polymerase behaves when it encounters a DNA adduct during elongation. These elements include: (1) the ability of the RNA polymerase active site to accommodate the damaged base; (2) the size and shape of the adduct, which includes the specific modified base; (3) the stereochemistry of the adduct; (4) the base incorporated into the growing transcript; and (5) the local DNA sequence.


Assuntos
Adutos de DNA/metabolismo , Dano ao DNA , Reparo do DNA/fisiologia , RNA Polimerases Dirigidas por DNA/fisiologia , Transcrição Gênica/fisiologia , DNA/química , DNA/metabolismo , Adutos de DNA/genética , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA