Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Res Sq ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38765967

RESUMO

Rising global concentrations of environmental micro- and nanoplastics (MNPs) drive concerns for human exposure and health outcomes. Applying pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) methods to isolate and quantify MNPs from human samples, we compared MNP accumulation in kidneys, livers, and brains. Autopsy samples from the Office of the Medical Investigator in Albuquerque, NM, collected in 2016 and in 2024, were digested for Py-GC/MS analysis of 12 polymers. Brains exhibited higher concentrations of MNPs than liver or kidney samples. All organs exhibited significant increases from 2016 to 2024. Polyethylene was the predominant polymer; the relative proportion of polyethylene MNPs was greater in brain samples than in liver or kidney. Transmission electron microscopy verified the nanoscale nature of isolated particles, which largely appeared to be aged, shard-like plastics remnants across a wide range of sizes. Results demonstrate that MNPs are selectively accumulated into the human brain and concentrations are rising over time.

2.
ACS Nano ; 17(17): 16308-16325, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37643407

RESUMO

Owing to their uniform and tunable particle size, pore size, and shape, along with their modular surface chemistry and biocompatibility, mesoporous silica nanoparticles (MSNs) have found extensive applications as nanocarriers to deliver therapeutic, diagnostic and combined "theranostic" cargos to cells and tissues. Although thoroughly investigated, MSN have garnered FDA approval for only one MSN system via oral administration. One possible reason is that there is no recognized, reproducible, and widely adopted MSN synthetic protocol, meaning not all MSNs are created equal in the laboratory nor in the eyes of the FDA. This manuscript provides the sol-gel and MSN research communities a reproducible, fully characterized synthetic protocol to synthesize MSNs and corresponding lipid-coated MSN delivery vehicles with predetermined particle size, pore size, and drug loading and release characteristics. By carefully articulating the step-by-step synthetic procedures and highlighting critical points and troubleshooting, augmented with videos and schematics, this Article will help researchers entering this rapidly expanding field to yield reliable results.


Assuntos
Nanomedicina , Nanopartículas , RNA Interferente Pequeno , RNA Mensageiro , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA