Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nat Commun ; 11(1): 1922, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321922

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease in which insulin-producing pancreatic ß-cells are destroyed. Intestinal helminths can cause asymptomatic chronic and immunosuppressive infections and suppress disease in rodent models of T1D. However, the underlying regulatory mechanisms for this protection are unclear. Here, we report that CD8+ regulatory T (Treg) cells prevent the onset of streptozotocin -induced diabetes by a rodent intestinal nematode. Trehalose derived from nematodes affects the intestinal microbiota and increases the abundance of Ruminococcus spp., resulting in the induction of CD8+ Treg cells. Furthermore, trehalose has therapeutic effects on both streptozotocin-induced diabetes and in the NOD mouse model of T1D. In addition, compared with healthy volunteers, patients with T1D have fewer CD8+ Treg cells, and the abundance of intestinal Ruminococcus positively correlates with the number of CD8+ Treg cells in humans.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 1/imunologia , Células Secretoras de Insulina/imunologia , Linfócitos T Reguladores/imunologia , Animais , Clostridiales , Diabetes Mellitus Experimental/prevenção & controle , Diabetes Mellitus Tipo 1/prevenção & controle , Modelos Animais de Doenças , Faecalibacterium prausnitzii , Feminino , Microbioma Gastrointestinal , Humanos , Imunossupressores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , RNA Ribossômico 16S/metabolismo , Ruminococcus , Trealose/farmacologia
2.
Parasite Immunol ; 42(9): e12700, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32027755

RESUMO

Intestinal helminthes induce immunosuppressive responses as well as type 2 immunity. Their suppressive properties are intended to regulate inflammatory diseases such as allergies and autoimmune diseases. This study evaluated whether helminthic infections suppress obesity, a chronic inflammatory state, using an intestinal nematode, Heligmosomoides polygyrus (Hp). Infection with Hp at the same time as feeding a high-fat diet (HFD) prevented weight gain, dyslipidaemia and glucose intolerance observed in uninfected obese mice. Immunologically, Hp infection skewed M1 macrophages to M2 macrophages and induced type 2 innate lymphoid cells in adipose tissues. The expression of interleukin (IL)-33, a potent initiator of type 2 responses, was also increased in association with uncoupled protein 1 (UCP1). To further investigate the anti-obesity effects of IL-33 in mice infected with Hp, IL-33-deficient mice were fed the HFD and infected with Hp. These mutant mice rapidly gained weight compared with wild-type mice, indicating the anti-obesity effect of IL-33. In the absence of IL-33, the rapid increase in weight was not prevented, and type 2 responses and UCP1 expression were not observed even during Hp infection. These results suggested that the suppression of obesity by Hp is dependent on IL-33.


Assuntos
Dieta Hiperlipídica , Interleucina-33/fisiologia , Enteropatias Parasitárias/imunologia , Nematospiroides dubius , Obesidade/prevenção & controle , Infecções por Strongylida/imunologia , Tecido Adiposo/imunologia , Animais , Imunidade Inata , Enteropatias Parasitárias/complicações , Linfócitos/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nematospiroides dubius/imunologia , Obesidade/imunologia , Terapia com Helmintos
3.
Parasitol Int ; 76: 102057, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31954872

RESUMO

Intestinal helminths induce immune suppressive responses thought to regulate inflammatory diseases including allergies and autoimmune diseases. This study was designed to evaluate whether helminthic infections suppress the natural development of systemic lupus erythematosus (SLE) in NZBWF1 mice. Infection of NZBWF1 SLE-prone mice with two nematodes failed to establish long-lasting settlement. However, the Hymenolepis microstoma (Hm) rodent tapeworm successfully established long-term parasitization of NZBWF1 mice and was used to evaluate the suppressive effects of helminth infection. Ten-month-old NZBWF1 mice developed symptoms including autoantibody generation, proteinuria, glomerular histopathology, and splenomegaly, but mice infected with Hm at 2 months of age did not show any clinical signs. Furthermore, infection with Hm reduced lymphocyte activation and increased regulatory T cells in the spleen and mesenteric lymph nodes. These results indicate that infection with Hm protects NZBWF1 mice from naturally developing SLE and suggest that pathological immunity is attenuated, presumably because of the induction of regulatory T cells.


Assuntos
Himenolepíase/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/prevenção & controle , Animais , Modelos Animais de Doenças , Feminino , Hymenolepis , Terapia de Imunossupressão/métodos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos NZB , Organismos Livres de Patógenos Específicos , Linfócitos T Reguladores/imunologia
4.
Front Immunol ; 10: 2207, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608052

RESUMO

Our previous studies of protective immunity and pathology against blood stage malaria parasites have shown that not only CD4+ T cells, but also CD8+ T cells and macrophages, are important for host defense against blood stage malaria infection. Furthermore, we found that Plasmodium yoelii 17XNL (PyNL) parasitizes erythroblasts, the red blood cell (RBC) precursor cells, which then express MHC class I molecules. In the present study, we analyzed spleen cytokine production. In CD8+ T cell-depleted mice, IL-10 production in early stage infection was increased over two-fold relative to infected control animals and IL-10+ CD3- cells were increased, whereas IFN-γ production in the late stage of infection was decreased. At day 16 after PyNL infection, CD8+ T cells produced more IFN-γ than CD4+ T cells. We evaluated the involvement of the immunoproteasome in induction of immune CD8+ T cells, and the role of Fas in protection against PyNL both of which are downstream of IFN-γ. In cell transfer experiments, at least the single molecules LMP7, LMP2, and PA28 are not essential for CD8+ T cell induction. The Fas mutant LPR mouse was weaker in resistance to PyNL infection than WT mice, and 20% of the animals died. LPR-derived parasitized erythroid cells exhibited less externalization of phosphatidylserine (PS), and phagocytosis by macrophages was impaired. Furthermore, we tried to identify the cause of death in malaria infection. Blood lactate concentration was increased in the CD8+ T cell-depleted PyNL-infected group at day 19 (around peak parasitemia) to similar levels as day 7 after infection with a lethal strain of Py. When we injected mice with lactate at day 4 and 6 of PyNL infection, all mice died at day 8 despite demonstrating low parasitemia, suggesting that hyperlactatemia is one of the causes of death in CD8+ T cell-depleted PyNL-infected mice. We conclude that CD8+ T cells might control cytokine production to some extent and regulate hyperparasitemia and hyperlactatemia in protection against blood stage malaria parasites.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Citocinas/imunologia , Lactatos/sangue , Malária/imunologia , Parasitemia/imunologia , Plasmodium yoelii , Baço/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Eritrócitos , Feminino , Imunidade Celular , Macrófagos/imunologia , Malária/sangue , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Parasitemia/sangue
5.
Infect Immun ; 87(6)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30962398

RESUMO

Obesity is increasingly causing lifestyle diseases in developed countries where helminthic infections are rarely seen. Here, we investigated whether an intestinal nematode, Heligmosomoides polygyrus, has a suppressive role in diet-induced obesity in mice. Infection with H. polygyrus suppressed weight gain in obese mice, which was associated with increased uncoupling protein 1 (UCP1) expression in adipocytes and a higher serum norepinephrine (NE) concentration. Blocking interactions of NE with its receptor on adipocytes resulted in the failure to prevent weight gain and to enhance UCP1 expression in obese mice infected with H. polygyrus, indicating that NE is responsible for the protective effects of H. polygyrus on obesity. In addition to sympathetic nerve-derived NE, the intestinal microbiota was involved in the increase in NE. Infection with H. polygyrus altered the composition of intestinal bacteria, and antibiotic treatment to reduce intestinal bacteria reversed the higher NE concentration, UCP1 expression, and prevention of the weight gain observed after H. polygyrus infection. Our data indicate that H. polygyrus exerts suppressive roles on obesity through modulation of microbiota that produce NE.


Assuntos
Terapia Biológica , Microbioma Gastrointestinal , Nematospiroides dubius/fisiologia , Obesidade/microbiologia , Obesidade/terapia , Adipócitos/metabolismo , Animais , Humanos , Intestinos/microbiologia , Intestinos/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Norepinefrina/metabolismo , Obesidade/metabolismo , Obesidade/parasitologia , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
6.
Emerg Infect Dis ; 24(4): 718-726, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29553316

RESUMO

Because ≈90% of malaria cases occur in Africa, emergence of artemisinin-resistant Plasmodium falciparum in Africa poses a serious public health threat. To assess emergence of artemisinin-resistant parasites in Uganda during 2014-2016, we used the recently developed ex vivo ring-stage survival assay, which estimates ring-stage-specific P. falciparum susceptibility to artemisinin. We conducted 4 cross-sectional surveys to assess artemisinin sensitivity in Gulu, Uganda. Among 194 isolates, survival rates (ratio of viable drug-exposed parasites to drug-nonexposed controls) were high (>10%) for 4 isolates. Similar rates have been closely associated with delayed parasite clearance after drug treatment and are considered to be a proxy for the artemisinin-resistant phenotype. Of these, the PfKelch13 mutation was observed in only 1 isolate, A675V. Population genetics analysis suggested that these possibly artemisinin-resistant isolates originated in Africa. Large-scale surveillance of possibly artemisinin-resistant parasites in Africa would provide useful information about treatment outcomes and help regional malaria control.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Resistência a Medicamentos , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Pré-Escolar , Estudos Transversais , Feminino , Genótipo , História do Século XXI , Humanos , Malária Falciparum/história , Malária Falciparum/mortalidade , Masculino , Mutação , Fenótipo , Plasmodium falciparum/genética , Taxa de Sobrevida , Uganda/epidemiologia , Sequenciamento Completo do Genoma
7.
J Immunol ; 200(3): 1101-1109, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29255076

RESUMO

Intestinal amebiasis is a major cause of diarrhea. However, research on host-amebae interactions has been hampered owing to a lack of appropriate animal models. Recently, a mouse model of intestinal amebiasis was established, and using it, we reported that Entamoeba moshkovskii colonized the intestine in a manner similar to that of the pathogenic Entamoeba histolytica In this study, we evaluated the protective mechanisms present against amebae using this model. CBA/J mice infected with E. histolytica had a persistent infection without apparent symptoms. In contrast, E. moshkovskii-infected mice rapidly expelled the ameba, which was associated with weight loss, diarrhea, and intestinal damage characterized by apoptosis of intestinal epithelial cells (IECs). Expression of NKG2D on intestinal intraepithelial lymphocytes (IELs) and IFN-γ-producing cells in Peyer's patches were significantly induced after infection with E. moshkovskii but not with E. histolytica IFN-γ-deficient mice infected with E. moshkovskii showed no obvious symptoms. Notably, none of these mice expelled E. moshkovskii, indicating that IFN-γ is responsible not only for intestinal symptoms but also for the expulsion of amebae. Furthermore, apoptosis of IECs and expression of NKG2D on IELs observed in E. moshkovskii-infected mice did not occur in the absence of IFN-γ. In vivo blocking of NKG2D in mice infected with E. moshkovskii enabled ameba to survive longer and remarkably reduced apoptotic IECs. Our results clearly demonstrate a novel protective mechanism exerted by IFN-γ against intestinal amebae, including induction of cytotoxicity of IELs toward IECs.


Assuntos
Entamoeba histolytica/imunologia , Interferon gama/imunologia , Intestinos/imunologia , Intestinos/patologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Animais , Apoptose/imunologia , Modelos Animais de Doenças , Entamebíase/imunologia , Entamebíase/parasitologia , Células Epiteliais/imunologia , Interações Hospedeiro-Parasita/imunologia , Inflamação/imunologia , Interferon gama/genética , Intestinos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Nódulos Linfáticos Agregados/imunologia , Linfócitos T/imunologia
9.
Trop Med Health ; 45: 20, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28814926

RESUMO

BACKGROUND: A prevalence study of Wuchereria bancrofti infection was carried out in 2014 at 4 study sites in northern Uganda using antigen and microfilaria tests. Each study site consists of a primary school and surrounding communities. These sites are inside the filariasis endemic area and have been covered by mass drug administration under the national elimination programme. However, no prevalence study had been conducted there before the present study. Without information on past and present endemicity levels, our study was meant to be an independent third-party investigation to know the latest filariasis situation. RESULTS: A total of 982 people including 570 schoolchildren (7-19 years) and 412 community people (7-25 years) were examined, all of them for filarial antigen and 695 for microfilariae. The study revealed that all subjects were negative by both methods. CONCLUSIONS: It was considered that annual mass drug administrations together with anti-malarial activities such as indoor residual spraying had contributed to the reduction of the filarial infection. However, based on the past data obtained near our study sites, we cannot exclude the possibility that filarial prevalence rates in our study sites were very low or even zero originally. During the study, we encountered several patients with lower leg edema and pachydermic (elephant skin-like), mossy skin lesion of the foot. Judging from clinical features and bare-footed life-style of people in the area, non-filarial elephantiasis, possibly podoconiosis, was suspected. This elephantiasis has been reported in areas where filariasis is not endemic.

10.
Sci Rep ; 7(1): 4844, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28687738

RESUMO

Humans and dogs are the two major hosts of Strongyloides stercoralis, an intestinal parasitic nematode. To better understand the phylogenetic relationships among S. stercoralis isolates infecting humans and dogs and to assess the zoonotic potential of this parasite, we analyzed mitochondrial Cox1, nuclear 18S rDNA, 28S rDNA, and a major sperm protein domain-containing protein genes. Overall, our analyses indicated the presence of two distinct lineages of S. stercoralis (referred to as type A and type B). While type A parasites were isolated both from humans and dogs in different countries, type B parasites were found exclusively in dogs, indicating that the type B has not adapted to infect humans. These epidemiological data, together with the close phylogenetic relationship of S. stercoralis with S. procyonis, a Strongyloides parasite of raccoons, possibly indicates that S. stercoralis originally evolved as a canid parasite, and later spread into humans. The inability to infect humans might be an ancestral character of this species and the type B might be surmised to be an origin population from which human-infecting strains are derived.


Assuntos
Doenças do Cão/parasitologia , Helmintíase/parasitologia , Enteropatias Parasitárias/parasitologia , Enteropatias Parasitárias/veterinária , Filogenia , Strongyloides stercoralis/classificação , Estrongiloidíase/parasitologia , Estrongiloidíase/veterinária , Animais , Análise por Conglomerados , DNA de Helmintos/química , DNA de Helmintos/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Doenças do Cão/transmissão , Cães , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genótipo , Helmintíase/transmissão , Humanos , Enteropatias Parasitárias/transmissão , Epidemiologia Molecular , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Análise de Sequência de DNA , Strongyloides stercoralis/genética , Strongyloides stercoralis/isolamento & purificação , Estrongiloidíase/transmissão , Zoonoses/parasitologia , Zoonoses/transmissão
11.
Sci Rep ; 6: 30136, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27445125

RESUMO

Accurate, sensitive, rapid, and easy operative diagnosis is necessary to prevent the spread of malaria. A cell microarray chip system including a push column for the recovery of erythrocytes and a fluorescence detector was employed for malaria diagnosis in Uganda. The chip with 20,944 microchambers (105 µm width and 50 µm depth) was made of polystyrene. For the analysis, 6 µl of whole blood was employed, and leukocytes were practically removed by filtration through SiO2-nano-fibers in a column. Regular formation of an erythrocyte monolayer in each microchamber was observed following dispersion of an erythrocyte suspension in a nuclear staining dye, SYTO 21, onto the chip surface and washing. About 500,000 erythrocytes were analyzed in a total of 4675 microchambers, and malaria parasite-infected erythrocytes could be detected in 5 min by using the fluorescence detector. The percentage of infected erythrocytes in each of 41 patients was determined. Accurate and quantitative detection of the parasites could be performed. A good correlation between examinations via optical microscopy and by our chip system was demonstrated over the parasitemia range of 0.0039-2.3438% by linear regression analysis (R(2) = 0.9945). Thus, we showed the potential of this chip system for the diagnosis of malaria.


Assuntos
Malária/diagnóstico , Malária/parasitologia , Plasmodium falciparum/química , Eritrócitos/parasitologia , Fluorescência , Humanos , Leucócitos/parasitologia , Malária/sangue , Microscopia/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Parasitemia/sangue , Parasitemia/diagnóstico , Parasitemia/parasitologia , Poliestirenos/química , Sensibilidade e Especificidade , Dióxido de Silício/química , Coloração e Rotulagem/métodos , Uganda
13.
Sci Rep ; 5: 15699, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26503461

RESUMO

Gastrointestinal symptoms, such as abdominal pain and diarrhea, are frequently observed in patients with Plasmodium falciparum malaria. However, the correlation between malaria intestinal pathology and intestinal microbiota has not been investigated. In the present study, infection of C57BL/6 mice with P. berghei ANKA (PbA) caused intestinal pathological changes, such as detachment of epithelia in the small intestines and increased intestinal permeability, which correlated with development with experimental cerebral malaria (ECM). Notably, an apparent dysbiosis occurred, characterized by a reduction of Firmicutes and an increase in Proteobacteria. Furthermore, some genera of microbiota correlated with parasite growth and/or ECM development. By contrast, BALB/c mice are resistant to ECM and exhibit milder intestinal pathology and dysbiosis. These results indicate that the severity of cerebral and intestinal pathology coincides with the degree of alteration in microbiota. This is the first report demonstrating that malaria affects intestinal microbiota and causes dysbiosis.


Assuntos
Disbiose/etiologia , Intestinos/microbiologia , Malária/complicações , Malária/patologia , Plasmodium berghei/fisiologia , Animais , Barreira Hematoencefálica/metabolismo , DNA Bacteriano/análise , DNA Bacteriano/isolamento & purificação , Bases de Dados Genéticas , Fezes/microbiologia , Firmicutes/genética , Firmicutes/isolamento & purificação , Intestinos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microbiota , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA