RESUMO
In the era of immunotherapy, the targeting of disease-specific biomarkers goes hand in hand with the development of highly selective antibody-based reagents having optimal pharmacological/toxicological profiles. One interesting and debated biomaker for several types of cancers is the onco-fetal protein Cripto-1 that is selectively expressed in many solid tumours and has been actively investigated as potential theranostic target. Starting from previously described anti-CFC/Cripto-1 murine monoclonal antibodies, we have moved forward to prepare the humanized recombinant Fabs which have been engineered so as to bear an MTGase site useful for a one-step site-specific labelling. The purified and bioconjugated molecules have been extensively characterized and tested on Cripto-1-positive cancer cells through in vitro binding assays. These recombinant Fab fragments recognize the target antigen in its native form on intact cells suggesting that they can be further developed as reagents for detecting Cripto-1 in theranostic settings.
Assuntos
Fragmentos Fab das Imunoglobulinas , Neoplasias , Animais , Humanos , Camundongos , Anticorpos , Proteínas Ligadas por GPI/metabolismo , Fragmentos Fab das Imunoglobulinas/química , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas de Neoplasias/metabolismoRESUMO
Drug development in recent years is increasingly focused on developing personalized treatments based on blocking molecules selective for therapeutic targets specifically present in individual patients. In this perspective, the specificity of therapeutic targets and blocking agents plays a crucial role. Monoclonal antibodies (mAbs) and their surrogates are increasingly used in this context thanks to their ability to bind therapeutic targets and to inhibit their activity or to transport bioactive molecules into the compartments in which the targets are expressed. Small antibody-like molecules, such as Fabs, are often used in certain clinical settings where small size and better tissue penetration are required. In the wake of this research trend, we developed a murine mAb (3D1) neutralizing the activity of Nodal, an oncofetal protein that is attracting an ever-increasing interest as a selective therapeutic target for several cancer types. Here, we report the preparation of a recombinant Fab of 3D1 that has been humanized through a computational approach starting from the sequence of the murine antibody. The Fab has been expressed in bacterial cells (1 mg/L bacterial culture), biochemically characterized in terms of stability and binding properties by circular dichroism and bio-layer interferometry techniques and tested in vitro on Nodal-positive cancer cells.