Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 96(3): 532-545, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30054951

RESUMO

Grass biomass is comprised chiefly of secondary walls that surround fiber and xylem cells. A regulatory network of interacting transcription factors in part regulates cell wall thickening. We identified Brachypodium distachyon SECONDARY WALL ASSOCIATED MYB1 (SWAM1) as a potential regulator of secondary cell wall biosynthesis based on gene expression, phylogeny, and transgenic plant phenotypes. SWAM1 interacts with cellulose and lignin gene promoters with preferential binding to AC-rich sequence motifs commonly found in the promoters of cell wall-related genes. SWAM1 overexpression (SWAM-OE) lines had greater above-ground biomass with only a slight change in flowering time while SWAM1 dominant repressor (SWAM1-DR) plants were severely dwarfed with a striking reduction in lignin of sclerenchyma fibers and stem epidermal cell length. Cellulose, hemicellulose, and lignin genes were significantly down-regulated in SWAM1-DR plants and up-regulated in SWAM1-OE plants. There was no reduction in bioconversion yield in SWAM1-OE lines; however, it was significantly increased for SWAM1-DR samples. Phylogenetic and syntenic analyses strongly suggest that the SWAM1 clade was present in the last common ancestor between eudicots and grasses, but is not in the Brassicaceae. Collectively, these data suggest that SWAM1 is a transcriptional activator of secondary cell wall thickening and biomass accumulation in B. distachyon.


Assuntos
Brachypodium/genética , Proteínas de Plantas/genética , Biomassa , Brachypodium/crescimento & desenvolvimento , Brassicaceae/genética , Brassicaceae/crescimento & desenvolvimento , Parede Celular/metabolismo , Celulose/metabolismo , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Polissacarídeos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Front Plant Sci ; 9: 1895, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30627134

RESUMO

Arabidopsis thaliana CELLULOSE SYNTHASE A4/7/8 (CESA4/7/8) are three non-redundant subunits of the secondary cell wall cellulose synthase complex. Transcript abundance of these genes can vary among genotypes and expression quantitative trait loci (eQTL) were identified in a recombinant population of the accessions Bay-0 and Shahdara. Genetic mapping and analysis of the transcript levels of CESAs between two distinct near isogenic lines (NILs) confirmed a change in CESA4 expression that segregates within that interval. We sequenced the promoters and identified 16 polymorphisms differentiating CESA4Sha and CESA4Bay . In order to determine which of these SNPs could be responsible for this eQTL, we screened for transcription factor protein affinity with promoter fragments of CESA4Bay, CESA4Sha , and the reference genome CESA4Col . The wall thickening activator proteins NAC SECONDARY WALL THICKENING PROMOTING FACTOR2 (NST2) and NST3 exhibited a decrease in binding with the CESA4Sha promoter with a tracheary element-regulating cis-element (TERE) polymorphism. While NILs harboring the TERE polymorphisms exhibited significantly different CESA4 expression, cellulose crystallinity and cell wall thickness were indistinguishable. These results suggest that the TERE polymorphism resulted in differential transcription factor binding and CESA4 expression; yet A. thaliana is able to tolerate this transcriptional variability without compromising the structural elements of the plant, providing insight into the elasticity of gene regulation as it pertains to cell wall biosynthesis and regulation. We also explored available DNA affinity purification sequencing data to resolve a core binding site, C(G/T)TNNNNNNNA(A/C)G, for secondary wall NACs referred to as the VNS element.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA