Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Cancer ; 1(10): 998-1009, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33479702

RESUMO

Metabolic reprogramming is a key hallmark of cancer, but less is known about metabolic plasticity of the same tumor at different sites. Here, we investigated the metabolic adaptation of leukemia in two different microenvironments, the bone marrow and the central nervous system (CNS). We identified a metabolic signature of fatty-acid synthesis in CNS leukemia, highlighting Stearoyl-CoA desaturase (SCD1) as a key player. In vivo SCD1 overexpression increases CNS disease, whilst genetic or pharmacological inhibition of SCD1 decreases CNS load. Overall, we demonstrated that leukemic cells dynamically rewire metabolic pathways to suit local conditions and that targeting these adaptations can be exploited therapeutically.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Estearoil-CoA Dessaturase , Sistema Nervoso Central/metabolismo , Humanos , Lipogênese , Estearoil-CoA Dessaturase/genética , Microambiente Tumoral
2.
Leukemia ; 33(4): 981-994, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30185934

RESUMO

In chronic myeloid leukemia (CML), tyrosine kinase inhibitor (TKI) treatment induces autophagy that promotes survival and TKI-resistance in leukemic stem cells (LSCs). In clinical studies hydroxychloroquine (HCQ), the only clinically approved autophagy inhibitor, does not consistently inhibit autophagy in cancer patients, so more potent autophagy inhibitors are needed. We generated a murine model of CML in which autophagic flux can be measured in bone marrow-located LSCs. In parallel, we use cell division tracing, phenotyping of primary CML cells, and a robust xenotransplantation model of human CML, to investigate the effect of Lys05, a highly potent lysosomotropic agent, and PIK-III, a selective inhibitor of VPS34, on the survival and function of LSCs. We demonstrate that long-term haematopoietic stem cells (LT-HSCs: Lin-Sca-1+c-kit+CD48-CD150+) isolated from leukemic mice have higher basal autophagy levels compared with non-leukemic LT-HSCs and more mature leukemic cells. Additionally, we present that while HCQ is ineffective, Lys05-mediated autophagy inhibition reduces LSCs quiescence and drives myeloid cell expansion. Furthermore, Lys05 and PIK-III reduced the number of primary CML LSCs and target xenografted LSCs when used in combination with TKI treatment, providing a strong rationale for clinical use of second generation autophagy inhibitors as a novel treatment for CML patients with LSC persistence.


Assuntos
Aminoquinolinas/farmacologia , Autofagia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Células-Tronco Neoplásicas/patologia , Poliaminas/farmacologia , Animais , Apoptose , Proliferação de Células , Proteínas de Fusão bcr-abl/genética , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Células Tumorais Cultivadas
3.
Nat Commun ; 8: 16031, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28685754

RESUMO

Tissue architecture contributes to pancreatic ductal adenocarcinoma (PDAC) phenotypes. Cancer cells within PDAC form gland-like structures embedded in a collagen-rich meshwork where nutrients and oxygen are scarce. Altered metabolism is needed for tumour cells to survive in this environment, but the metabolic modifications that allow PDAC cells to endure these conditions are incompletely understood. Here we demonstrate that collagen serves as a proline reservoir for PDAC cells to use as a nutrient source when other fuels are limited. We show PDAC cells are able to take up collagen fragments, which can promote PDAC cell survival under nutrient limited conditions, and that collagen-derived proline contributes to PDAC cell metabolism. Finally, we show that proline oxidase (PRODH1) is required for PDAC cell proliferation in vitro and in vivo. Collectively, our results indicate that PDAC extracellular matrix represents a nutrient reservoir for tumour cells highlighting the metabolic flexibility of this cancer.


Assuntos
Carcinoma Ductal Pancreático/genética , Colágeno/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/genética , Prolina Oxidase/genética , Prolina/metabolismo , Animais , Transporte Biológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Colágeno/química , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Humanos , Masculino , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Transgênicos , Transplante de Neoplasias , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Pró-Colágeno-Prolina Dioxigenase/genética , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Prolina Oxidase/metabolismo , Transdução de Sinais
4.
Int J Cancer ; 138(4): 787-96, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25732227

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a debilitating and almost universally fatal malignancy. Despite advances in understanding of the oncogenetics of the disease, very few clinical benefits have been shown. One of the main characteristics of PDAC is the tumor architecture where tumor cells are surrounded by a firm desmoplasia. By reducing vascularization, thus both oxygen and nutrients delivery to the tumor, this stroma causes the appearance of hypoxic zones driving metabolic adaptation in surviving tumor cells in order to cope with challenging conditions. This metabolic reprogramming promoted by environmental constraints enhances PDAC aggressiveness. In this review, we provide a brief overview of previous works regarding the importance of glucose and glutamine addiction of PDAC cells. In particular we aim to highlight the need for exploring the impact of metabolites other than glucose and glutamine, such as non-essential amino acids and oncometabolites, to find new treatments. We also discuss the need for progress in methodology for metabolites detection. The overall purpose of our review is to emphasize the need to look beyond what is currently known, with a focus on amino acid availability, in order to improve our understanding of PDAC biology.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Humanos
5.
Semin Cell Dev Biol ; 43: 52-64, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26365277

RESUMO

The acknowledgement that metabolic reprogramming is a central feature of cancer has generated high expectations for major advances in both diagnosis and treatment of malignancies through addressing metabolism. These have so far only been partially fulfilled, with only a few clinical applications. However, numerous diagnostic and therapeutic compounds are currently being evaluated in either clinical trials or pre-clinical models and new discoveries of alterations in metabolic genes indicate future prognostic or other applicable relevance. Altogether, these metabolic approaches now stand alongside other available measures providing hopes for the prospects of metabolomics in the clinic. Here we present a comprehensive overview of both ongoing and emerging clinical, pre-clinical and technical strategies for exploiting unique tumour metabolic traits, highlighting the current promises and anticipations of research in the field.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Metabolismo Energético/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Metabolismo Energético/fisiologia , Humanos , Metabolômica , Neoplasias/patologia
6.
Proc Natl Acad Sci U S A ; 112(8): 2473-8, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25675507

RESUMO

The malignant progression of pancreatic ductal adenocarcinoma (PDAC) is accompanied by a profound desmoplasia, which forces proliferating tumor cells to metabolically adapt to this new microenvironment. We established the PDAC metabolic signature to highlight the main activated tumor metabolic pathways. Comparative transcriptomic analysis identified lipid-related metabolic pathways as being the most highly enriched in PDAC, compared with a normal pancreas. Our study revealed that lipoprotein metabolic processes, in particular cholesterol uptake, are drastically activated in the tumor. This process results in an increase in the amount of cholesterol and an overexpression of the low-density lipoprotein receptor (LDLR) in pancreatic tumor cells. These findings identify LDLR as a novel metabolic target to limit PDAC progression. Here, we demonstrate that shRNA silencing of LDLR, in pancreatic tumor cells, profoundly reduces uptake of cholesterol and alters its distribution, decreases tumor cell proliferation, and limits activation of ERK1/2 survival pathway. Moreover, blocking cholesterol uptake sensitizes cells to chemotherapeutic drugs and potentiates the effect of chemotherapy on PDAC regression. Clinically, high PDAC Ldlr expression is not restricted to a specific tumor stage but is correlated to a higher risk of disease recurrence. This study provides a precise overview of lipid metabolic pathways that are disturbed in PDAC. We also highlight the high dependence of pancreatic cancer cells upon cholesterol uptake, and identify LDLR as a promising metabolic target for combined therapy, to limit PDAC progression and disease patient relapse.


Assuntos
Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Colesterol/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Adenocarcinoma/enzimologia , Adenocarcinoma/patologia , Animais , Compartimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Clonais , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Lipoproteínas/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Camundongos , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/patologia , Fenótipo , Prognóstico , Receptores de LDL/genética , Receptores de LDL/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Gencitabina , Neoplasias Pancreáticas
7.
Proc Natl Acad Sci U S A ; 110(10): 3919-24, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23407165

RESUMO

Pancreatic ductal adenocarcinoma is one of the most intractable and fatal cancer. The decreased blood vessel density displayed by this tumor not only favors its resistance to chemotherapy but also participates in its aggressiveness due to the consequent high degree of hypoxia. It is indeed clear that hypoxia promotes selective pressure on malignant cells that must develop adaptive metabolic responses to reach their energetic and biosynthetic demands. Here, using a well-defined mouse model of pancreatic cancer, we report that hypoxic areas from pancreatic ductal adenocarcinoma are mainly composed of epithelial cells harboring epithelial-mesenchymal transition features and expressing glycolytic markers, two characteristics associated with tumor aggressiveness. We also show that hypoxia increases the "glycolytic" switch of pancreatic cancer cells from oxydative phosphorylation to lactate production and we demonstrate that increased lactate efflux from hypoxic cancer cells favors the growth of normoxic cancer cells. In addition, we show that glutamine metabolization by hypoxic pancreatic tumor cells is necessary for their survival. Metabolized glucose and glutamine converge toward a common pathway, termed hexosamine biosynthetic pathway, which allows O-linked N-acetylglucosamine modifications of proteins. Here, we report that hypoxia increases transcription of hexosamine biosynthetic pathway genes as well as levels of O-glycosylated proteins and that O-linked N-acetylglucosaminylation of proteins is a process required for hypoxic pancreatic cancer cell survival. Our results demonstrate that hypoxia-driven metabolic adaptive processes, such as high glycolytic rate and hexosamine biosynthetic pathway activation, favor hypoxic and normoxic cancer cell survival and correlate with pancreatic ductal adenocarcinoma aggressiveness.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Glicólise , Hipóxia/metabolismo , Neoplasias Pancreáticas/metabolismo , Animais , Carcinoma Ductal Pancreático/patologia , Hipóxia Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Modelos Animais de Doenças , Glutamina/metabolismo , Hexosaminas/biossíntese , Humanos , Ácido Láctico/metabolismo , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Nus , Camundongos Transgênicos , Modelos Biológicos , Neoplasias Pancreáticas/patologia , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA